Accepted Manuscript

Probing on the hydrothermally synthesized iron oxide nanoparticles for ultra-capacitor applications

E. Mitchell, F. De Souza, R.K. Gupta, P.K. Kahol, D. Kumar, L. Dong, Bipin Kumar Gupta

 PII:
 S0032-5910(14)01003-1

 DOI:
 doi: 10.1016/j.powtec.2014.12.021

 Reference:
 PTEC 10682

To appear in: Powder Technology

Received date:11 August 2014Revised date:8 November 2014Accepted date:11 December 2014

Please cite this article as: E. Mitchell, F. De Souza, R.K. Gupta, P.K. Kahol, D. Kumar, L. Dong, Bipin Kumar Gupta, Probing on the hydrothermally synthesized iron oxide nanoparticles for ultra-capacitor applications, *Powder Technology* (2014), doi: 10.1016/j.powtec.2014.12.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Probing on the hydrothermally synthesized iron oxide nanoparticles for ultra-capacitor applications

E. Mitchell¹, F. De Souza¹, R.K. Gupta^{1*}, P.K. Kahol², D. Kumar³, L. Dong⁴, Bipin Kumar Gupta⁵

¹Department of Chemistry, Pittsburg State University, 1701 S. Broadway, Pittsburg, KS 66762
 ²Department of Physics, Pittsburg State University, 1701 S. Broadway, Pittsburg, KS 66762
 ²Department of Mechanical Engineering, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411

³Department of Physics, Astronomy, and Materials Science, Missouri State University, 901 S. National Avenue, Springfield, MO 65897

⁴National Physical Laboratory (CSIR), Dr K.S. Krishnan Road, New Delhi-110012, India

Abstract:

Herein, we report a facile synthesis of iron oxide nanoparticles by a hydrothermal route. The X-ray diffraction analysis confirms that these nanoparticles are pure magnetite (Fe₃O₄) phase. Further, the morphology and average particle size were investigated using scanning electron microscopy. The average particle size of was observed ~ 65 nm. The magnetic measurement reveals the ferromagnetic nature of the synthesized Fe₃O₄ nanoparticles at room temperature. The coercivity and remanence magnetization were observed to be 98 Oe and 0.51 μ_B /molecule, respectively. Fe₃O₄ nanoparticles showed a sharp transition (Verwey transition) around 120 K in M *vs.* T measurements. The observation of the Verwey transition indicates the high quality and phase purity of the synthesized Fe₃O₄. Moreover, the Fe₃O₄ nanoparticles were electrochemically characterized for their potential application as an electrode for ultra-capacitors. The specific capacitance of 97 F/g at the current of 1 mA was observed with excellent cyclic stability. The present facile synthesis method could be a potential approach for fabrication of ultra-capacitors using cheap and environment friendly ferromagnetic iron oxide nanoparticles for high performance energy materials.

Keywords: Iron oxide, hydrothermal synthesis, scanning electron microscopy, magnetic properties, cyclic voltammetry, ultracapacitor

^{*}Authors for correspondence

E-mail addresses: ramguptamsu@gmail.com (R.K. Gupta) Phone Number: 001-620-235-4763

Download English Version:

https://daneshyari.com/en/article/6677227

Download Persian Version:

https://daneshyari.com/article/6677227

Daneshyari.com