## Accepted Manuscript

Production of nanocrystalline lithium fluoride by planetary ball-milling

Clemens Wall, Alexander Pohl, Michael Knapp, Horst Hahn, Maximilian Fichtner

PII: S0032-5910(14)00500-2

DOI: doi: 10.1016/j.powtec.2014.05.043

Reference: PTEC 10298

To appear in: Powder Technology

Received date: 21 March 2014
Revised date: 26 May 2014
Accepted date: 27 May 2014



Please cite this article as: Clemens Wall, Alexander Pohl, Michael Knapp, Horst Hahn, Maximilian Fichtner, Production of nanocrystalline lithium fluoride by planetary ball-milling, *Powder Technology* (2014), doi: 10.1016/j.powtec.2014.05.043

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

### Production of nanocrystalline lithium fluoride by planetary ball-milling

Clemens Wall\*a,c, Alexander Pohla, Michael Knappb,c, Horst Hahna,c and Maximilian Fichtnera,c

- [a] Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- [b] Institute of Applied Materials, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- [c] Helmholtz Institute Ulm (HIU), Albert-Einstein Allee 11, 89081 Ulm, Germany

\* Corresponding author. Tel.: +49 (0)721 6082-8924, Fax: +49 (0)721 6082-6368, E-mail: clemens.wall@kit.edu

KEYWORDS: Lithium fluoride, ball-milling, nanoparticles, nanocomposites, lithium-ion-batteries

#### **Abstract**

Lithium fluoride nanopowders have been prepared by high-energy milling using a planetary ball-mill. The influence of dispersion agents, milling time, ball-size and ball-to-powder ratio on the properties of the material has been investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and N<sub>2</sub>-physisorption measurements (BET). It was observed that the agglomeration of the nanoparticles depends on the size of the milling balls as well as on the ball-to-powder ratio. By using a dispersion agent, the agglomeration could be reduced and a lower primary particle size was obtained. The crystallite size was reduced to a value of 20 nm and the primary particle size to 34 nm when LiF was milled with a mixture of 10 and 20 mm tungsten carbide balls in n-pentane. The LiF nanopowders were used to synthesize Co/LiF/C nanocomposites which were tested as cathode materials for lithium-ion-batteries. With decreasing size of LiF an increase of the capacity of the cathodes from 68 to 165 mAh/g in the first discharge was observed.

#### Download English Version:

# https://daneshyari.com/en/article/6677388

Download Persian Version:

https://daneshyari.com/article/6677388

<u>Daneshyari.com</u>