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Two novel implementations of the Thornton and Ning (TN) plastic–adhesive particle contact theory for use in
numerical simulations using the discrete element method (DEM) are presented. They are both in contrast to the
original TN implementation, which is indirect and requires an incremental calculation approach. First, a combined
Newton–Raphson bisection (NRB) methodology, which calculates exactly the contact force in a non-incremental
manner and, second, a tabulation-scaling (TS) implementation which closely approximates the elastic–adhesive
unloading curve for a particle contact, resulting in a significant increase in computational speed, are described.
The TS implementation is able to reproduce the total energy transferred during elastic–adhesive unloading force
curves to within 3% of the exact NRB result. Since TN theory utilizes real material parameters, such as Young's mod-
ulus and adhesion energy, the TS implementation is a physically appealing and relatively fast (only slightly slower
than Hertzian elastic spheres)method of performing a DEM simulation to predict the behaviour of plastic–adhesive
particles. The subroutines for calculation of TN plastic–adhesive force are compatible with the open source DEM
package, LIGGGHTS.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The discrete element method (DEM) is now widely applied to a
range of industrially important problems involving mixtures of fine ad-
hesive powders, such as blends of drug and excipient particles used for
pharmaceutical tablet compaction [1,2]. However, there are significant
challenges in creating computationally tractable models that reproduce
the correct physics of particle interactions. In particular, the use of a
plastic–adhesive contact model, whereby particles may stick together
due to their adhesion energies, and can dissipate energy during plastic
deformation, may provide further insight into the potential problems
of pharmaceutical tablet compaction. Unfortunately, the use of such
complex contact models can greatly increase the required calculation
time for DEM simulations [3].

Including the effect of plasticity in DEM simulations is a non-trivial
task. Beginning with Hertz's theory of contacting elastic bodies, Stronge
[4] explains how the normal force, contact radius and the work done
change as the deformations transition to being elastoplastic and finally,
fully plastic. This theory originates from Johnson [5] modelling the plas-
tic zone as a hemisphere. An alternative theory of elastic–plastic particle

contacts from Thornton [6] used a Hertzian contact to describe the elas-
tic contact, and a Hertzian pressure distribution with a cutoff value for
the yielded contact. This theory was extended by Li et al. [7], for rigid
spheres in contact with elastic-perfectly plastic half spaces, to allow
the pressure at the centre of the contact to vary with the contact radius.
The effect of elastic–plastic asperities was accounted for by Chang et al.
[8], and by incorporating conservation of volume into their model, they
were able to more realistically calculate the contact area for rough
surfaces.

The combined effects of adhesion and plasticity can be calculated es-
pecially quickly by linear contactmodels such as those by Luding [9] and
Pasha et al. [10], but they lack a direct link between the contact model
parameters and physical material properties. The contact model of
Tomas [11] utilizes parameters which relate more directly to the mate-
rial properties of the contacting bodies. By using parameters such as the
“characteristic adhesion distance”, which can be determined by the sep-
aration found in molecular interactions (Eq. (6) in Ref. [11]), the Tomas
model enables prediction of behaviour for known materials. Unfortu-
nately, not all of the model input parameters are easily obtained from
common material properties, such as Young's modulus.

A theory developed by Thornton and Ning [6] offers the capability to
combine the description of contact adhesion developed by Johnson,
Kendall and Roberts (JKR) [5,12] with a theory proposed by Thornton
and Ning for non-adhesive plastic contacts [6]. Like the original JKR
theory, the Thornton and Ning (TN) theory utilizes real material parame-
ters, such as Young's modulus and adhesion energy, giving it a more
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powerful predictive capability than alternatives which rely on experi-
mental measurements of adhesive and plastic interactions. However, in
its original implementation, it is rather complex and time-consuming to
calculate.

In this paper, we present two new non-incremental procedures
to calculate the TN plastic–adhesive force: first, a combined
Newton–Raphson bisection (NRB) method that can be used to calculate
the TN plastic–adhesive force independently of past calculations, except
theunloadingpoint (if required); second a novel tabulation-scaling (TS)
procedurewhich is numerically stable and faster to calculate, while only
losing a small amount of accuracy. A brief summary of TN theory and the
original TN implementation will be presented in Section 1.1, before
describing our alternative implementations in Section 2. An explanation
of how TN theory is calculated by the NRB method is in Section 2.1. The
numerical hygiene issues which inspired the NRB method are detailed
in Sections 2.2, and 2.3 presents the TS method, which removes the
need to solve computationally expensive quartic equations throughout
a DEM simulation. Section 2.4 summarizes the benefits and issues with
the TN, NRB and TS implementations. Section 3 contains the results
from using the two new implementations of TN theory. Specifically,
Section 3.1 compares the new implementations to the plastic–adhesive
force curves of Thornton and Ning [6]. The error introduced into the
elastic–adhesive unloading curve from using TS is explored in
Section 3.2 and the computational performance is compared to a basic
elastic Hertzian force in the open source DEM package LIGGGHTS [13]
in Section 3.3. In Section 3.4, the relationship between the coefficient
of restitution and impact velocity is explored, and results are compared
to those in Ref. [6].

1.1. Thornton and Ning's plastic–adhesive contact model implementation

There are three main stages of the TN plastic–adhesive particle
contact theory: elastic–adhesive loading, plastic–adhesive loading and
elastic–adhesive unloading. In the original TN implementation, the con-
tact force, P, is updated in an incremental fashion using Eq. (1), where t
is the current timestep, Δt is the timestep increment, k is the contact
stiffness and Δα is the change in particle overlap. In all three stages of
plastic–adhesive particle contact, Eq. (1) is used, with k changing de-
pending on the state of contact. The effective Young's modulus, E⁎,
and effective radius of the contact, R⁎, are determined using Eqs. (5)
and (6) both from Ref. [6] and are used throughout the simulation.

P t þ Δtð Þ ¼ P tð Þ þ kΔα ð1Þ

During elastic–adhesive loading, the initial force is described by JKR
theory [5,12]. The force is calculated using Eq. (1) by setting k to dP/dα
of Eq. (72) from Ref. [6]. The effective Hertzian force, P1, and pull-off
force, Pc, required to calculate k can be determined using Eqs. (60) and
(50) both fromRef. [6], where Γ is the interface energy. Next, the contact
radius, a, is updated using Eq. (59) from Ref. [6].

The contact can become plastic if the contact radius exceeds the con-
tact radius at which yield occurs, ay. The value of ay is dependent on the
limiting contact pressure, py (which is approximately equal to 2.4 times
the yield stress [14]), and is determined using Eq. (65) from Ref. [6]. To
update the force using Eq. (1) in the plastic contact regime, k is set to
dPp/dα in Eq. (69) from Ref. [6], where Pp signifies a plastic force. The
contact radius during a plastic–adhesive contact is the contact radius
determined by JKR theory [5,12,15]; therefore, the elastic–adhesive
force is still determined at each timestep, as though yield never
occurred.

The elastic–adhesive unloading force depends on the deformation
history of the contact. If the contact never yields, the elastic–adhesive
equations (Eqs. (72, 60, 50, 59) from Ref. [6]) are used to update the
force and contact fails when overlap is equal to −αf (see Eq. (49) from
Ref. [6]). If the contact was in a plastic state just before unloading,
then a unique elastic–adhesive regime begins, where the contact

stiffness and new pull-off force are dependent on the amount of
previous plastic deformation. In this paper, all future references to the
elastic–adhesive unloading force refer to unloading after plastic
deformation.

When elastic–adhesive unloading begins, a new effective radius is
calculated, Rp⁎, which can be determined using Eq. (76) from Ref. [6],
where P1⁎ is the effective Hertzian force at the point of unloading
(acquired from the continued elastic–adhesive loading force calcula-
tions [15], and using Eq. (60) from Ref. [6]) and P⁎ is the plastic force
at the point of unloading. To continue the force calculation in Eq. (1), k
is set to dP/dα in Eq. (73) from Ref. [6], where the unloading pull-off
force, Pcr, is calculated using Eq. (77) from Ref. [6], the unloading effec-
tive Hertzian force, P1r, is calculated using Eq. (75) from Ref [6] and the
contact radius during unloading is calculated using Eq. (74) from Ref.
[6]. (It appears that R1r is actually P1r in the current version of Eq. (74)
from Ref. [6], see [15].) It should be noted that the sign of ± in
Eq. (75) from Ref. [6] is positive when elastic–adhesive unloading
begins, and is negative when the unloading force reaches Pcr [15].
After reaching the minimum force, contact is broken when the force is
equal to −5

9 Pcr; however, contact can be re-established if reloading oc-
curs and particle overlap is greater than αd [15], where αd is the larger
of the two overlaps in the unloading curve when the force is equal to−8

9
Pcr [15]. If particle overlap increases so that P⁎ is exceeded, the plastic–
adhesive contact regime begins again as described above. After the con-
tact fails, the contact radius and force are held at zero until overlap is
less than −αf.

2. New implementation of Thornton and Ning's
plastic–adhesive model

2.1. Calculation details

In contrast to the original TN plastic–adhesive implementation, as
described in the previous section, the present scheme is not of an incre-
mental nature. Instead, amethodwhich allows the direct determination
of the force at any point of the contact, given its unloading history, will
be described. This implementation still uses the theory set out by
Thornton and Ning [6], and has the same three stages of contact. During
an elastic–adhesive contact, JKR theory is used. Force determination
begins with calculating the contact radius by solving Eq. (2), (originally
Eq. (61) from Ref. [6]) as a quartic equation. The elastic–adhesive force
is evaluated using Eq. (3) (originally Eq. (62) from Ref [6]). The elastic–
adhesive contact radius and force are evaluated at every timestep dur-
ing loading.

α ¼ a2

R� −
ffiffiffiffiffiffiffiffiffiffiffi
2πΓa
E�

r
ð2Þ

Pelastic ¼
4E�a3

3R� −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πΓE�a3

p
ð3Þ

Similarly to the TN implementation (Section 1.1), plastic deforma-
tion occurswhen the elastic contact radius, a, exceeds the contact radius
at which yield occurs, ay, which is determined using Eq. (65) from Ref.
[6] and the limiting contact pressure, py. During a plastic–adhesive load-
ing contact, the force is determined using Eq. (4) (originally Eq. (66)
from Ref. [6]). Note that the value of a is determined by solving Eq. (2).

Pplastic ¼
4E�a3y
3R� −ay

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πΓE�a

p
þ πpy a2−a2y

� �
ð4Þ

The unloading regime depends on contact history, similar to the TN
implementation. If the plastic–adhesive regime is never reached,
Eqs. (2) and (3) are used to determine the elastic–adhesive force, until
no real solutions can be found from Eq. (2). If plastic deformation pre-
ceded unloading, then a unique elastic–adhesive force is required. The
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