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Monitoring and controlling particle size distribution in crushing and grinding circuits are essential for improved en-
ergy efficiency and metallurgical performance. Machine vision is probably the most suitable approach for on-line
particle size estimation because it is robust, cost-effective and non-intrusive. In the present study, size distribution
of particles in crushing circuit of a copper concentrator was estimated using image processing and neural network
techniques. Several imageswere taken frommaterial on a conveyor belt andprocessed for particle identification and
segmentation. A number of the most commonly used size features were extracted from the segmented images and
their potential to estimate the actual particle size, represented by sieve size analysis, was evaluated. The results
showed that there were substantial differences between size distributions obtained from various size measures.
Maximum inscribed disk was found to be themost effective feature for particle size description. Finally, the particle
size distribution of material on the conveyor belt was precisely estimated by Principal Component Analysis (PCA)
and neural network techniques. The proposed soft sensors can be used for real time measurement of particle size
distribution in the industrial operations instead of sophisticated and expensive instruments.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

On-line determination of particle size distribution in mineral pro-
cessing industry is necessary for improved energy efficiency and
crushing/grinding circuit performance [6,15]. However, owing to large
size and high tonnage of the crushed materials, measurement of the
particle size distribution bymanual sampling and sieving is invasive, in-
consistent and time consuming.

Amachine vision-based control system is a fast, inexpensive, consis-
tent and non-intrusive technique for particle size measurement in in-
dustrial operations. The main problem of this system is related to
inherent overlapping and segregation of the particles and therefore
not taking into account the small fragments located under the bigger
ones [21]. In spite of extensive researches conducted, this problem has
not been fully resolved yet.

In the last few years, a number of on-line optical sizing systems have
been developed to measure the particle size distribution of coarse rocks
[5,10,11,13,17] and iron pellets [16]. Williams et al. [19] investigated the
feasibility of using an array of non-invasive tomographic sensors around
amoving conveyor belt for on-line estimation of particle size distribution.
Soft-sensors ormodel-based sensors have also beenused for indirectly es-
timation of the particle size distribution [3,9]. In this approach a model,
such as neural network, is developed to indirectly calculate variable of

interest from easily measurable information. Kaartinen and Tolonen [8]
introduced a new approach for the crushed ore analysis that was based
on a combination of a belt weigher and a 3D laser scanner.

Thurley and Andersson [16] proposed an industrial prototype for
sizing iron ore green pellets on conveyor belt using morphological
image segmentation. Their findings showed that sizing of identified pel-
lets gave promising results using the best-fit rectangle measure. Liao
and Tarng [11] developed an automatic optical inspection system for
coarse particle size distribution. The system was composed of four
sub-modules (i.e. particle separation, image acquisition, image process-
ing and electric controlmodule) to improve the analysis error caused by
overlapping particles. However, most of the above techniques have had
limited or no industrial application so far.

In the present study, image processing and neural network tech-
niques are integrated to estimate the particle size distribution of mate-
rial on an industrial conveyor belt.

2. Experimental details

2.1. Image acquisition and sampling

Industrial images were collected from a conveyor belt in the
crushing circuit at Qaleh-Zari copper concentrator in Iran. In this plant,
the crushing circuit consists of a jaw crusher followed by two parallel
cone crushers in closed circuit with vibrating screens. Thematerial out-
put from the jaw crusher was targeted for imaging and sizing. For that
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purpose, the selected conveyor belt was stopped and a specified section
of the materials (i.e. 1 m in length of the belt) was firstly imaged and
then completely swept for the sieve sizing. The imaging system
consisted of a Canon digital camera, with a 14.1 megapixels resolution,
mounted on a metal structure above the conveyor belt. Images were
captured under uncontrolled lighting conditions. Overall, 21 manual
sampleswere collected and analyzed for particle sizedetermination. Ac-
tual size distribution of the samples was determined using the sieve
analysis technique. The sieves with square apertures and sizes of 110,
84, 53, 42, 30, 25, 15, 10, 5 mm were used.

2.2. Image processing

It should be pointed out that the main objective of this work was to
investigate the potential of neural networks to estimate the particle size
distribution not to introduce a new image segmentation algorithm.
Hence, in order to eliminate the effect of erroneous segmentation on
the results obtained from applying the proposed approach, images
were segmented manually. In order to segment the particles manually,
images to be segmented required preparations. This included image
sharpening, edge extraction, converting RGB to gray level image, and
image thresholding and segmentation (see Figs. 1, 2).

In order to quantify the proportion of fines between the coarse par-
ticles, the whole region occupied by the particles on the segmented
imagewas determined using a closing operator (i.e. morphological dila-
tion followed by erosion) with a disk structuring element (Fig. 2e) [4].
Then, the segmented image was subtracted from the above image to
identify the fines (Fig. 2f). It should be noted that the proportion of
fine particles detected by this approach was considered as −5 mm
fraction.

2.3. Different size measures extracted from images

In this section a number of the most commonly used size measures
including particle area and circumference, equivalent area circle, equiva-
lent area ellipse (major axis, minor axes), best-fit rectangle (length,
width), Feret diameter (Feret's length, Feret's width, Feret's average),
and maximum inscribed disk are introduced. The above employed
equivalent diameters are depicted in Fig. 3 and their definitions are as
follows:

2.3.1. Particle area and circumference
Particle area and circumference were defined as the sum of all pixels

forming each particle and the sum of all boundary pixels of any particle,
respectively (Fig. 3c).

2.3.2. Equivalent area circle
Equivalent area circle is the circle with the same area as the particle

(Fig. 3d). Equivalent area of any particle is the number of pixels in the
binary image. The diameter of the equivalent area circle describes the
size of the particle [18].

2.3.3. Equivalent area ellipse
Equivalent area ellipse is the ellipse that has the same area and ori-

entation as the particle, where the center of the ellipse equals the center
of the particle (Fig. 3e). Similarly, equivalent area of any particle is the
number of pixels in the binary image. To describe the size and shape
of the particle of interest, the major and minor axes are extracted
from the equivalent ellipse [2].

2.3.4. Best-fit rectangle
Best-fit rectangle is defined as the rectangle with smallest area that

fits around the region of interest at any rotation (Fig. 3f). The best-fit
rectangle is calculated by simply determining the area of a rectangle
that fits around the region for every one-degree rotation and finding

the rectangle with the smallest area [18]. The best-fit rectangle length
and width are measured and reported in this research.

2.3.5. Feret diameter
Feret diameter is the distance between two tangents on opposite

sides of the particle (Fig. 3g). For each particle Feret diameter in different
directions with one-degree steps is calculated. Thus, 180 Feret diameters
are obtained for any particle. Finally, Feret length (maximum Feret),
Feret width (minimum Feret) and Feret average are calculated [1].

2.3.6. Maximum inscribed disk
Maximum inscribed disk is the diameter of the largest disk that fits

inside a particle (Fig. 3h). It is calculated using a simple brute force
method using the mathematical morphology operator opening [2].
That is, erosion followed by dilation using flat disk-shaped structuring
elements with increasing radius. Implementation starts with a disk of
radius 1, and as long the disk fits inside the particle, there is an image
with at least one region larger than that disk. Any structuring element
with a disk that does not fit inside the particle results in an empty
image. This is when the iterative process stops.

2.4. Error evaluation

The goodness of fit of the estimated particle size distributions to the
actual results (sieve sizing) was evaluated by the root mean square
error (RMSE) from the following expression:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Xi−Yið Þ
2

vuut ð1Þ

Xi cumulative passing % calculated by sieve sizing for the ith
fraction

Yi cumulative passing % estimated by image processing algo-
rithm for the ith fraction

N number of fractions.

Original Image

Image Sharpening using Gabor Filter

Edge Extraction

Image Thresholding

Image Segmentation

Measuring Size Related Parameters

Fig. 1. Image processing routines used in present work.
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