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a b s t r a c t

This paper deals with the modelling and numerical simulation of isothermal bubbly flows with multi-size
bubbles. The study of isothermal bubbly flows without phase change is a first step towards the more gen-
eral study of boiling bubbly flows. Here, we are interested in taking into account the features of such iso-
thermal flow associated to the multiple sizes of the different bubbles simultaneously present inside the
flow. With this aim, several approaches have been developed. In this paper, two of these approaches are
described and their results are compared to experimental data, as well as to those of an older approach
assuming a single average size of bubbles. These two approaches are (i) the moment density approach for
which two different expressions for the bubble diameter distribution function are proposed and (ii) the
multi-field approach. All the models are implemented into the NEPTUNE_CFD code and are compared to a
test performed on the MTLOOP facility. These comparisons show their respective merits and shortcom-
ings in their available state of development.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with the modelling and the numerical simula-
tion of isothermal multi-size bubbly flows. Several physical phenom-
ena determine the bubble size and shape, which in turn determines
the evolution of the flow structure (void fraction distribution,
mean liquid and gas velocity profiles, turbulence intensity in the li-
quid phase. . .). The phenomena responsible for the changes in the
bubble size distribution are the bubbles coalescence and break-up,
the gas compressibility, the phase change and the bubbles defor-
mations. Here, we will assume that the bubbles remain spherical,
for the sake of simplicity. However, when the bubbles distort (i.e.
they do not retain their spherical shape), the interface becomes
anisotropic and a full tensorial treatment should be adopted (Doi
and Ohta, 1991; Wetzel and Tucker, 1999; Lhuillier, 2004a,b;
Morel, 2007). This general approach is very complicated, and only
few closures are available in the literature in very restricted cases.
Therefore, for this first study, we assume that the bubbles remain

spherical. In fact, in all the approaches that will be presented here,
the bubbles are supposed to be multi-dispersed in size but not in
shape. The general study of bubbly flows with bubbles multi-dis-
persed in size and in shape could be envisaged in a future work.

It is also assumed that there is no phase change, therefore only
the first three types of physical phenomena (coalescence, break-up
and gas compressibility) will influence the bubble diameter. In-
deed, we consider isothermal flows without phase change as a first
stage with the aim of evaluating the different approaches for the
prediction of bubbly flows with multi-size bubbles, and that,
although some of these methods have already been tested in
boiling bubbly flow studies (Seiler and Ruyer, 2008; Morel and
Laviéville, 2008).

The simultaneous existence of several bubble sizes in a bubbly
flow has direct consequences on the velocities. In a quiescent
liquid, it is observed that the bubble rising velocity generally
depends on the bubble size: the larger the bubble, the greater
the bubble rising velocity. If we consider a more complex flow,
with a vertical liquid flow rate, and define the bubble relative
velocity as the difference between the bubble velocity and the
velocity of the surrounding liquid, this relative velocity depends
on the bubble size in the same manner. This difference between
the relative velocities of bubbles having different sizes is known
as a possible source of bubble collisions and coalescences (Prince
and Blanch, 1990). Another important aspect for upward bubbly
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flows in vertical pipes is that the small bubbles move laterally to-
wards the pipe wall, and the large bubbles (above a critical size)
move laterally in the opposite sense, i.e. towards the pipe axis.
These various behaviours have been observed experimentally by
many authors. Tomiyama (1998) relates this behaviour to the
change of sign of the lift force, which is responsible for the lateral
bubble migration, and proposes an empirical correlation to express
the lift coefficient as a function of the bubble diameter (via the
bubble Reynolds and Eotvos numbers). These two phenomena
illustrate also the fact that a bubbly flow with multi-size bubbles
is generally characterized also by bubble multiple velocities. In
some approaches, like the multi-field approach presented in
Section 6, this multi-velocity aspect can be taken into account in
a very natural way but is tacked with more difficulties by other
approaches, like with the moment density approaches described
in Sections 4 and 5.

This paper is organized as follows. In Section 2, we briefly recall
the two-fluid model in its simplified version for isothermal flows
without phase change and the evolution equations for the different
useful moment densities of the bubble diameter distribution func-
tion. All the presented approaches here can be derived from the
equations established in Section 2, except for the multi-field ap-
proach, whose bases will be detailed in Section 6. Section 3 is de-
voted to the classical single-size approach, in which an interfacial
area concentration (IAC) evolution equation is included. This IAC
is combined with the bubble void fraction to determine the bubble
Sauter mean diameter (SMD) which is the single diameter consid-
ered in this approach, called besides ‘‘single size”. Two different ap-
proaches, namely the moment’s density approach and the multi-field
one, are frequently considered for the CFD simulations of bubbly
flows with multiple bubble sizes. Two Sections 4 and 5 are devoted
to various versions of the moment’s density approach, and Section
6 is devoted to the multi-field approach. Simulations of a MTLOOP
experiment have allowed comparing results of the various ap-
proaches and deducing their merits and shortcomings. This exper-
iment will be described in Section 7. One experimental test is
calculated with these four different approaches implemented into
the NEPTUNE_CFD code. The results of the comparisons are pre-
sented in Section 8. In Section 9, some conclusions are drawn about
the present status of the different methods and some perspectives
are given for future work.

2. Two-fluid model and geometrical balance equations

In this paper, we deal with adiabatic and isothermal bubbly
flows without phase change. In this situation, the mass and
momentum balance equations of the two-fluid model read (Ishii
and Hibiki, 2006):

@akqk
@t þr:ðakqkVkÞ ¼ 0 k ¼ L;G

@akqkVk
@t þr:ðakqkVkVkÞ ¼ �akrpk þMk þ akqkg

þr:½akðsk þ sT
kÞ� k ¼ L;G

ð1Þ

where ak is the local time-fraction of presence of phase k, qk its
averaged density, Vk its averaged velocity and pk the bulk-averaged
pressure for phase k. The vector g is the gravity acceleration, sk and
sT

k are the averaged viscous stress tensor and the turbulent ‘‘Rey-
nolds” stress tensor, respectively, and the vector Mk is the averaged
interfacial transfer of momentum. The phase index k takes the val-
ues L for the liquid phase and G for the gas phase. Eqs. (1) have been
obtained by Ishii and Hibiki (2006) by means of a time-averaging,
but very similar equations can be obtained by means of ensemble
averaging (e.g. Drew and Passman, 1999). The difference between
the interfacial-averaged pressure for phase k pki and the bulk-aver-
aged pressure pk has been neglected. We will also neglect the differ-

ence between the two bulk-averaged pressures in the two phases,
therefore making the approximation pL = pG = p.

Making this approximation of a common pressure for the two
phases, the closure issue of the system of equations (1) lies in
the averaged viscous stress tensors for the two phases, the
Reynolds stress tensors for the two phases and the interfacial
momentum transfers. Here we will describe only the closure of this
last term (see also Section 8). If we neglect the averaged effects of
the interfacial tension, the averaged interfacial momentum balance
reduces to (Ishii and Hibiki, 2006):X
k¼L;G

Mk ¼ 0 ð2Þ

Therefore it is sufficient to express the gas (or liquid) interfacial
momentum transfer term, the liquid (or gas) interfacial momen-
tum transfer being deduced from the action and reaction principle,
in the context of the assumptions mentioned above. In bubbly flow
studies, the interfacial momentum transfer term Mk is often
decomposed into several averaged forces, namely a drag force, an
added mass force, a lift force, a turbulent dispersion force and
sometimes a wall force. The averaged expressions of these forces
can be obtained approximately by averaging classical expressions
for the forces exerted by the liquid on a single spherical bubble
(e.g. Morel et al., 2004). These different forces involve the bubble
diameter, therefore their averaged counterparts involve some geo-
metrical moments of the bubble diameter distribution function,
like the void fraction, the IAC and some averaged bubble diameters.
It is therefore necessary to determine these geometrical moments
in order to close the interfacial momentum transfer term. It is
worthwhile to note that, in more general boiling bubbly flows
involving phase change, the IAC or other geometrical variables also
strongly influence the heat and mass interfacial transfers, hence
the great importance given to their correct modelling.

As the bubbles remain spherical, the geometry of the bubbles
population can be completely described by means of a distribution
function f(n;x,t) where n is a parameter characteristic of the bubble
size, such as its diameter, its interfacial area or its volume. The
bubble distribution function f(n;x,t) is defined such that
f(n;x,t)dnd3x is the probable number of bubbles having a size
parameter between n and n + dn into the volume element d3x
around the point x at time t. Here we choose the bubble diameter
d being the parameter n. The mean geometry of the bubble popu-
lation can also be derived from the statistical moment densities
of the distribution function. The pth-order moment density of the
diameter distribution function is defined by:

Spðx; tÞ ¼̂
Z

dpf ðd; x; tÞdd ð3Þ

We can construct an infinite number of mean diameters dpq by
using an infinite number of moment densities, through the defini-
tion relation:

dpq¼̂
Sp

Sq

� � 1
p�q

ð4Þ

The first four moment densities are related, under some
assumptions regarding their spatial variation, to very useful quan-
tities for the study of bubbly flows with spherical bubbles:

n ¼̂ S0; d10 ¼̂ S1=n; ai ¼̂ pS2; a ¼̂ pS3=6 ð5Þ

where n(x,t) is the bubble number density, d10(x,t) is the mean bub-
ble diameter (mathematical expectation), ai (x,t) is the interfacial
area concentration (IAC) and a(x,t) is the void fraction (averaged
volumetric fraction of the gas phase). Three other important mean
diameters are often used:
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