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The normal (NFD) and tangential contact forces (TFD) between viscoelastic ellipsoidal particles are studied
based on the contact mechanics and finite element method. It is found that the NFD and TFD force models
previously formulated for spheres are valid for ellipsoidal particles and non-spherical particles of smooth sur-
face, provided that some variables in the models are properly considered. The applicability of the NFD and
TFD models are demonstrated in the collisions of two viscoelastic ellipsoids and shown to agree well with
the results calculated by means of the finite element method. As part of the study, the applicability of the
Linear-Spring-Dashpot (LSD) model which is widely used in the discrete modeling is also examined, and
its limitation is identified.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Discrete Element Method (DEM) introduced by Cundall and
Strack [1] has become a popular tool to study the dynamics of granu-
lar materials. Compared with continuum-based methods, DEM can
avoid artificial assumptions about the constitutive and other closure
relations and provide useful microscopic information such as the tra-
jectory of and contact forces acting on an individual particle. It treats
granular materials as a system of discrete soft particles where the mo-
tion of a particle is controlled by the interactions from its surrounding
particles or fluid according to the Newton's second law of motion [2].
However, to produce reliable simulation results, the inter-particle
contact forces must be accurately determined.

The studies of the contact mechanics between solids date back to
Hertz [3] for the normal force and Mindlin–Deresiewicz (MD) [4,5] for
the tangential force. The two classical theories consider ideal elastic–
frictional solids, hence known to be insufficient to represent the real
contact properties, especially in terms of energy dissipation. Inelastic
behaviors such as elastoplasticity and viscoelasticity are therefore
generally considered to be more accurate in deriving contact laws.
For example, Thornton [6], Vu-Quoc et al. [7] and Li et al. [8] have re-
spectively proposed different NFDmodels for elastic–perfectly plastic
spheres. The tangential force of elastoplastic spheres was also investi-
gated by Vu-Quoc et al. [9] by use of the finite element method (FEM)
and resulted in a quite complicated TFD model. Wu et al. [10–12]
analyzed the rebound behavior of elastoplastic spheres with a wide
range of impact angles and tested their results against experimental
and FEM results. The contact mechanics between viscoelastic spheres

have also been studied by other investigators based on the Hertz and
MD theories [13–15]. Supported by the FEM results, a recent study of
the contact of a viscoelastic sphere with a rigid wall suggests a set of
semi-theoretical force models for DEM simulations [16,17].

However, all those studies focused on ideal spheres which are just
an approximation to engineering particles. In practice, particle shape
varies and is reported to affect granular packing and flow significant-
ly [18–23]. There are increasing uses of non-spherical particles,
e.g., ellipsoids [18–21] and polygons [22,23], in DEM simulations
of granular materials. Nevertheless, previous studies are mainly
concerned with the algorithm of contact detection. How to precisely
evaluate the contact forces between non-spherical particles is still
lack of serious investigation, although some studies have been
conducted on the force treatment of non-spheres comprised by
‘glued spheres’ [24,25].

In this work, we present an FEM study of NFD and TFD characteris-
tics of viscoelastic ellipsoids. The theoretical aspects of contact mechan-
ics in the normal and tangential directions are described in Section 2,
where a set of semi-theoretical models are derived in connection with
our previous study [16]. The comparison of themodelswith FEM results
is given in Section 3 together with a detailed description of the FEM
simulation. The effectiveness of the viscoelastic NFD and TFD models
is examined in different collisions between two ellipsoids. Finally, the
main findings from this study are summarized in Section 4.

2. Theoretical treatments

2.1. Normal contact force

2.1.1. The Hertz theory
Prior to the study of viscoelastic contact, it is helpful to give a brief

summary of the elastic contact theory of Hertz which is the basis for
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the present analysis. The Hertz theory applies to general solids pro-
vided that the surfaces of solids are continuous and the deformation
of solids induced by contact is far smaller than the dimensions of
each solid [26]. Due to the localized nature of most contact problems,
the deforming regions of contact surfaces are very small and can be
approximated as quadric curved surfaces. That is, regardless of the
whole shapes of solids, their contact properties are mainly deter-
mined by the local geometries in the vicinity of the contact point,
characterized by two principal radii of curvature R1′, R1″, and R2′,
R2″, as well as the corresponding principal axes, T1′, T1″ and T2′, T2″
as shown in Fig. 1. In most cases, the principal axes of two surfaces
do not coincide but are inclined to each other by an angle α. When
loaded in the normal direction, the two solids deform and touch
each other over an elliptical area with major and minor semi-axes
being a and b respectively. For spheres, the ellipse reduces to a circle
with a = b. For the contact shown in Fig. 1, a summary of the contact
quantities are given as follows.
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where FHertz is the normal contact force according to the Hertz theory,
δn is the relative displacement of two particles in the normal direc-
tion, E* = {(1 − v1

2)/E1 + (1 − v2
2)/E2}−1, where E and v are respec-

tively Young's modulus and the Poisson ratio, and Re = (AB)−1/2/2 is
the effective radius. F1 and F2 are the correction factors which equal
unity for circular contact. Their expressions are quite complex as de-
scribed in [26]. In practice, approximate equations are often used. For
example, below is the one formulated by Hale [27]:
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where variables A and B are determined from the local geometrical
variables by the following equations [26]:
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Once the principal radii of curvature R1′, R1″, and R2′, R2″, and the
inclined angle α are known, one can determine the values of A and B
from Eq. (5), the correction factors Fl and F2 from Eq. (4) and the ef-
fective radius according to the definition Re = (AB)−1/2/2. Then the
normal contact force Fn can be calculated according to Eq. (1). The
profile of the contact area, determined by parameters a and b, can
be obtained by solving Eqs. (2) and (3). Generally, the calculation of
the principal radii of curvature is complex for non-spherical particles.
We show how to do so for the ellipsoids in Appendix A.

2.1.2. Viscoelastic NFD
Consistent with the previous studies [13–17], in this work, the vis-

coelastic behavior is defined by the following constitutive relations:

σ ij ¼ σ e
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ij
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where E1 = E/(1 + v) and E2 = E/3(1 − 2v) are elastic constants, and
η1 and η2 are coefficients of viscosity related to shear and bulk deforma-
tion, respectively. δij is the Kronecker symbol. An additional viscous
stress σij

v is introduced in case of viscoelastic material which is propor-
tional to the rate of strain. Similar to the treatment of the spheres in
the previous studies [14,16], this viscous stress is expressed as

σv
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∂δn
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Generally, the strain field εij in Eq. (7) is unknown in advance.
Hertzsch et al. [28] and Brilliantov et al. [14] proposed a quasistatic
approximation to overcome this problem, assuming that the displace-
ment velocities in the bulk are much smaller than the wave speed in

Fig. 1. The local surfaces in the vicinity of contact position.
After ref. [44].
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