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a b s t r a c t

A Lagrangian continuous random walk (CRW) model is developed to predict turbulent particle dispersion
in arbitrary wall-bounded flows with prevailing anisotropic, inhomogeneous turbulence. The particle
tracking model uses 3D mean flow data obtained from the Fluent CFD code, as well as Eulerian statistics
of instantaneous quantities computed from DNS databases. The turbulent fluid velocities at the current
time step are related to those of the previous time step through a Markov chain based on the normalized
Langevin equation which takes into account turbulence inhomogeneities. The model includes a drift
velocity correction that considerably reduces unphysical features common in random walk models. It
is shown that the model satisfies the well-mixed criterion such that tracer particles retain approximately
uniform concentrations when introduced uniformly in the domain, while their deposition velocity is van-
ishingly small, as it should be. To handle arbitrary geometries, it is assumed that the velocity rms values
in the boundary layer can locally be approximated by the DNS data of fully developed channel flows.
Benchmarks of the model are performed against particle deposition data in turbulent pipe flows, 90�
bends, as well as more complex 3D flows inside a mouth-throat geometry. Good agreement with the data
is obtained across the range of particle inertia.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulent flows which transport particulates are quite often
encountered in a vast array of environmental, industrial, and med-
ical applications. Examples of particle-laden flows can be found in
atmospheric dispersion of pollutants, sediment transport in rivers,
drug delivery in human airways, fouling in compressor and turbine
blades, chemical pulping, nuclear fission products transport, etc.
Hence, an accurate description of particle transport is of great prac-
tical importance. While particle transport in isotropic and homoge-
neous turbulent fields has been extensively studied (Yeung and
Pope, 1989; Squires and Eaton, 1991), wall-bounded flows have
not comparatively attracted the same attention. In the latter,
boundary layers form close to the walls, and turbulence is strongly
anisotropic and inhomogeneous, which renders the problem quite
a bit more complicated. Of particular importance in boundary layer
flows is the understanding of mechanisms responsible for particle
preferential concentration (Marchioli and Soldati, 2002), which in
turn explain many macroscopic features such as the particle depo-
sition rates on the walls. The heart of the particle dispersion prob-
lem resides in modeling the random velocity fluctuations which
particles encounter along their trajectories.

As summarized by Dehbi (2008), one can distinguish two main
families of methods to treat particle dispersion in fluid flows: Eule-
rian and Lagrangian. In the Eulerean or ‘‘two-fluid” approach, the
particles are regarded as a continuous phase for which the aver-
aged conservation equations (continuity, momentum and energy)
are solved in similar fashion to the carrier gas flow field (Zhang
and Prosperetti, 1994). The Eulerean approach is particularly suit-
able for denser suspensions when particle–particle interactions are
important and the particle feedback on the flow is too large to
ignore. The main challenge facing Eulerian-type, two-fluid ap-
proaches resides in accurately defining the inter-phase exchange
rates and closure laws which arise from the averaging procedures
(Drew, 1983). In addition, the strong coupling between the phases
renders the Eulerean approach quite delicate to handle, especially
at boundaries where the solid phase may be removed or reflected.

The Lagrangian approach (Maxey, 1987) treats particles as a dis-
crete phase which is dispersed in the continuous phase. The parti-
cle volume loading is usually assumed negligible, so that particles
have no feedback effect on the carrier gas and particle–particle
interactions are neglected. In the Lagrangian framework, the con-
trolling phenomena for particle dispersion in the field are assessed
using a rigorous treatment of the forces acting on the particle. In
general, the detailed flow field is computed first, then a represen-
tatively large number of particles are injected in the domain, and
their trajectories determined by following individual particles until
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they are removed from the gas stream or leave the computational
space. Particle motion is extracted from the time integration of
Newton’s second law, in which all the relevant forces can be incor-
porated (drag, gravity, lift, thermophoretic force, etc.). The
Lagrangian approach is computationally intensive, because it en-
tails tracking a large number of particles until stationary statistics
are achieved. On the other hand, the results of Lagrangian particle
tracking (LPT) are physically easier to interpret. Therefore, in the
following investigation, the LPT methodology is used, along with
the assumption that the dispersed phase is dilute enough not to af-
fect the continuous flow field (one-way coupling).

Many methods have been developed to take into account veloc-
ity fluctuations in the turbulent flow. In principle, the simplest and
more ‘‘physical” method is Direct Numerical Simulation (DNS)
(McLaughlin, 1989) in which turbulence is ‘‘reproduced” by solving
the transient Navier–Stokes continuity and momentum equations
on a sufficiently fine grid and with a sufficiently small time step.
In such a way, all relevant spatial and temporal scaled are resolved.
Large-Eddy Simulations (LES) (Wang and Squires, 1997) are con-
ceptually similar to DNS, except that the computational effort is re-
duced somewhat by requiring the grid to be only so fine as to
resolve the largest eddies, whereas the smaller, quasi isotropic ed-
dies are modeled. While being widely used, DNS-LES/LPT methods
remain computationally expensive, and their extension to general
geometries poses very tough and sometimes intractable computa-
tional challenges.

An alternative method, which borrows from the family of sto-
chastic models, attempts to simulate turbulence using comple-
mentary equations whereby the instantaneous turbulent
velocities are calculated from local quantities such as the mean
turbulent kinetic energy, the Eulerian time scale and the distance
to the wall. Examples of these treatments are random walk models
which have been popular due to their relative ease of implementa-
tion and reasonable computational expense.

In Discrete Random Walk (DRW) models (Gosman and Ioan-
nides, 1983), the turbulent dispersion of particles is modeled as a
succession of interactions between a particle and eddies which
have finite lengths and lifetimes. It is assumed that at time t0, a
particle with velocity Up is captured by an eddy which moves with
a velocity composed of the mean fluid velocity, augmented by a
random ‘‘instantaneous” component which is piecewise constant
in time. When the lifetime of the eddy is over or the particle
crosses the eddy, another interaction is generated with a different
eddy, and so forth. In wall-bounded flows, the original isotropic
DRW model of Gosman and Ioannides (1983) has been improved
to account for anisotropic turbulence in the near-wall regions. This
improved DRW model has been used with some success to predict
turbulent particle deposition in isothermal 2D channels (Kallio and
Reeks, 1989), in general 3D isothermal flows (Dehbi, 2008) or in
cooled pipes (Kröger and Drossinos, 2000).

Continuous Random Walk (CRW) models provide a more phys-
ically sound picture of fluid turbulence, as they represent the
instantaneous velocities in a continuous way. CRW models, which
are usually based on the Langevin equation, have been shown to
provide more realistic predictions of turbulent particle dispersion
than DRW, in particular in flows where inhomogeneous effects
are important such as mixing layers (MacInnes and Bracco, 1992)
or free shear flows (Bocksell and Loth, 2001). Hence a CRW model
will be adopted in this investigation.

One of the main goals of this investigation is to describe turbu-
lent particle dispersion in general wall-bounded geometries. Mean
flow parameters in complex turbulent flows can only be predicted
on a routine basis using standard Computational Fluid Dynamics
(CFD) tools based on the Reynolds Averaged Navier Stokes (RANS)
equations. Ideally then, turbulent particle dispersion in general 3D
geometries could be done by coupling CFD with reliable particle

dispersion models in a single application. However, as shown re-
cently by Tian and Ahmadi (2007), the use e.g. of DRW in combina-
tion with the state-of-the-art anisotropic Reynolds Stress Model
(RSM) still led to large overpredictions of particle deposition rates
in 2D parallel ducts. This is due to the fact that the RSM calculated
root mean square (rms) of the normal velocity near the wall over-
predicts the profiles determined by DNS studies, and no grid
refinement can remedy this problem. Using the same RSM-DRW
framework, Parker et al. (in press) were able to obtain dimension-
less deposition velocities that overestimated the experimental data
by less than one order of magnitude, which is the best that can be
achieved with today’s CFD codes in their default mode. Better re-
sults were however obtained when Tian and Ahmadi (2007) com-
bined the use of RSM for the mean flow field, the Langevin
equation for the turbulent fluctuations, and a DNS-supplied corre-
lation for the normal velocity rms close to the wall.

Based on the above, it becomes clear that quantitatively accu-
rate predictions of turbulent particle dispersion in general 3D
geometries can only be achieved through a substantial improve-
ment in the treatment of particle-turbulence interactions in the
boundary layer. This treatment needs to be developed and incorpo-
rated in the CFD tools in order to properly account for near-wall ef-
fects which control to a large extent the physics of particle
deposition. In this investigation, the fluid fluctuations will be com-
puted from a Langevin equation based model, which will be com-
bined with the mean flow data obtained from the Fluent 6.3 code
(Fluent, 2006). Fluent 6.3 is a state of the art code based on finite
volume methods that provides a wide choice of turbulence models
(k–e, k–x, RSM, etc). The necessary Eulerian statistics to close the
Lagrangian particle tracking model will be supplied by the avail-
able DNS databases of channel flows.

2. Particle equations of motion

Let a spherical particle be entrained in a turbulent flow. Assum-
ing only drag and gravity are significant, the vector force balance
on that particle is written as follows:

dUp

dt
¼ FDðU � UpÞ þ g 1� qf

qp

 !
ð1Þ

where the drag force per unit mass may be expressed as

FD ¼
18l

qpd2
p

CD
Rep

24
ð2Þ

In the above, U is the fluid velocity, Up is the particle velocity, qp the
particle density, qf the fluid density, g the gravity acceleration vec-
tor, dp the particle geometric diameter, l the fluid molecular viscos-
ity, and Rep the particle Reynolds number defined as

Rep ¼
dp j U � Up j

m
ð3Þ

m being the fluid kinematic viscosity. The drag coefficient is com-
puted in the Fluent code from the following equation:

CD ¼ b1 þ
b2

Rep
þ b3

Re2
p

ð4Þ

where the b’s are constants which apply to spherical particles for
wide ranges of Rep. The trajectory x(x1,x2,x3, t) of the particle is ob-
tained by integration of the following velocity vector equation with
respect to time:

Up ¼
dx
dt

ð5Þ

The expressions (1)–(5) are all one needs to compute the trajectory
of individual particles in laminar flows. The particle concentration
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