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Discrete element modeling (DEM) coupled with computational fluid dynamics (CFD) provides an excellent
platform to analyze fluid–particle systems. In all previouswork, thefluid and particle systems are solved on a sin-
gle grid. Contradictory requirements posed by resolution of fine scale fluid features such as turbulence, friction
and heat transfer coefficient at immersed surfaces, and the resolution of important geometrical features, versus
the necessity to maintain smoothness in particle solid fraction distribution on the chosen grid, oftenmake single
grid calculations untenable. To overcome this challenge,we have developed a novel two-grid technique inwhich
a coarser particle grid is mapped on to a fine fluid grid. The technique uses suitable mappings to transfer fluid field
variables fromfluid-to-particle grid, and interphase transfer terms and void fractions fromparticle-to-fluid grid. The
method is applied to a jetting fluidized bed of 750 μmparticles with a characteristic jet width of 1.6 mm. Results in
the form of time-averaged void fractions and solid-velocity for two inlet jet velocities with single and multiple jets
are compared to experiments. The results agree reasonably well with the experiments validating the two-grid
approach for cases where single grid DEM–CFD would have been difficult to apply.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in computational power enable us to perform
high fidelity numerical simulations on granular flows. Discrete element
modeling (DEM) and two-fluid-model (TFM) are the two most widely
used numerical methodologies for modeling granular flows like fluid-
ized beds and spouted beds. The two methods differ fundamentally in
the approach they follow. DEM is an Eulerian–Lagrangian approach
where the fluid flow is solved in an Eulerian framework while tracking
each individual particle in a Lagrangian fashion. On the other hand, TFM
considers the gas and solid to be two interpenetratingmedia and solves
for their interaction in an Eulerian–Eulerian approach. DEM provides
higher resolution compared to TFM as it resolves the complete dynamics
of each particle in the flow. Additional closure equations are required
in TFM to account for the continuum description of particles. No such
closure laws are required in DEM as it treats the particles individually.
DEMwas first developed by [1] and later adopted for simulation of fluid-
ized beds and coupled with CFD by [2]. Since then, DEM has been used in
investigating a wide variety of applications including surface diffusion
problems [3,4], modeling behavior of cohesive particles [5,6], segregation
of binary particle mixtures [7,8], capturing bubble dynamics in fluidized
beds [9–11] and so on. A comprehensive review focusing on the research
work done using DEM has been given by [12–14]. Two broad categories

of discrete particle methods (DPM) are available for modeling fluid–
particle interactions namely resolved and unresolved, respectively. A
resolved discrete particlemodel (RDPM) ismuch like a direct numerical
simulation (DNS), where fluid boundary conditions are prescribed on
the boundary of each individual particle. Arbitrary Lagrangian Eulerian
(ALE) and immersed boundary method (IBM) are two of themost pop-
ular techniques used to specify the no-slip boundary conditions on the
particle surface for RDPM. RDPM is generally used to model flows at
very small scales, without the requirement of fluid drag closures on
the particle surface. The unresolved DPM (UDPM) on the other hand
does not require fluid boundary conditions to be specified on the parti-
cle surface as they use drag closure equations. UDPM's have become
popular due to their ability to predict fluid–particle interactions with
considerable accuracy without the need to have sophisticated grid
resolution techniques near particle surfaces. A detailed review on
the different numerical techniques adapted to model gas–solid flows
at different scales has been given by [15].

Till now mostly a single-grid approach has been used for DEM–

CFD calculations, i.e., the particle and fluid calculations are done on
the same grid. This has an inherent problem in that the resolution re-
quirements for the particle and fluid fields are contradictory to each
other. Generally, fine grids are required to resolve the fluid flow field.
Fine grids for flow resolution become particularly important to resolve
small geometrical features which influence the flow, when the intersti-
tial flow is turbulent, and when velocity and temperature gradients
need to be resolved at surfaces for calculating wall shear stresses and
heat transfer coefficients. The fine fluid grids however, conflict with
particle field resolution requirements which require that the grid size
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should be large enough to represent the local volume fraction of the
particulate phase properly [16]. Too few particles in a cell result in
sharp changes of the solid fraction field across cells whenever particles
cross cell boundaries. This can lead to large spatial and temporal
fluctuations in the fluid volume fraction across cells ultimately making
the numerical integration unstable.

This aspect has been worked on in the literature by [17,18] who
performed a combined experimental and computational study to
find flow regimes in a spouted fluidized bed using a DEM–CFD meth-
odology. In their method performed on a single grid finer than the
particle diameter, they have represented each individual particle
within a porous cube halo of predetermined size which moves with
the particle. The solid fraction representing the particle is spread
over the porous cube and then distributed over the finer fluid cells
in a volume weighted manner. This is done for all particles. In doing
so, they prevent numerical instabilities arising due to the presence
of finer fluid cells in comparison to particle size by smoothing out
the variation in solid fraction. The porous cube halos can intercept a
fluid cell in any possible fashion which requires a calculation of the
fraction of the finer cells being intercepted by the porous cube. For a
3D simulation having millions of particles, the calculation of this cell
fraction at every time step can be computationally expensive. The
other difficulty arising out of the porous cube method is the communi-
cation overhead across interblock/interprocessor boundaries, needed
for parallelization, where information regarding these fraction of cells
intercepted need to be communicated between processors. Depending
on the position of a particle near an interprocessor boundary, varying
volumes of the porous cube could be present on a neighboring proces-
sor. This scenario would necessitate determining the number of cells
influenced by the porous cube on the adjoining processor for each
particle in the vicinity of the boundary, followed by packing and
communication. This can cause inefficient parallelization and thus
severely limit the parallel scalability.

In this work, we have developed a two-grid formulation for systems
involving DEM–CFD coupling in a parallel processing framework. In this
formulation, the fluid flow equations are solved on a fine grid which is
independent of the particle size, whereas the discrete particle equations
are solved on a coarser grid in which each coarse particle cell is com-
posed of multiple fluid cells. Recently, a similar technique has been
used by [19] to conduct 2D Lagrangianmodeling of fuel mixing in fluid-
ized beds. The approach that they have used is similar to what we inde-
pendently propose in our presentwork. One important difference lies in
the way the void fractions are calculated in each of the fluid cells. In
their work, the exact void fractions are calculated based on the volume
of particles intercepted at each fluid cell. This is time-consuming, and
extremely complicated for a three-dimensional fluid–particle coupled
problem involving thousands of particles. To avoid this, we calculate
the void fractions at the particle cell and map the same value back to
each of the fluid cells that fall within that particular particle cell. This
present approach might result in small inaccuracies, but for a domain
having tens of thousands of particles; the inaccuracies would be
negligible compared to the ease and swiftness of the simulations.

The new scheme is tested in a jetting fluidized bed and the results
have been validated with experiments [20] performed on the same ge-
ometry. Relatively large, 750 μm particles have been used for the tests.
Single, double and triple jet configurations have been studied using the
new two-grid formulation. Each jet is of size 1.6 × 4.95 mm2. Using a
single grid is not possible for the large particle size of 750 μm as the
requirement of having 3–4 particles in each direction of a fluid cell
[21] is not satisfied. In the single grid formulation, the grid size at the
jet entrance plane should be equal to the jets or smaller than it. But in
the case of 750 μm particles and 1.6 mm jet width, even the largest
possible grid size using a single grid cannot satisfy the discrete phase
requirement of having a smooth void fraction. The two-grid formulation
overcomes this limitation by allowing the jets to be resolved on thefluid
grid as well as satisfying the requirements of a smooth void fraction on

the particle grid. The method proposed in this paper avoids the compli-
cations of the porous cube method by considering two separate fixed
grid definitions, which intercept each other in a regular pattern thus
facilitating inter-processor communications. The calculation overhead
of calculating a very high number of cell fractions is also not required
in this method thus aiding in simpler and faster calculations, needed
for a large number of particles in three-dimensions. The paper is struc-
tured as follows. The next section describes the methodology used in
the single-grid and two-grid DEM followed by a section on results and
discussion, and the conclusions.

2. Methodology

Discrete elementmodeling (DEM) coupled with CFD code GenIDLEST
[22,23] (Generalized Incompressible Direct and Large Eddy Simulation
of Turbulence) has been used to numerically model the particle–fluid
interactions in a jetting fluidized bed. DEM offers two different ap-
proaches for resolving the particle–particle collisions. They are the
hard sphere [24] and soft sphere [1] approaches respectively. In our
analysis, the soft sphere approach is considered as it allows for multiple
particle interactionwhich is predominant in dense fluidized beds unlike
the hard sphere technique which can account for binary collisions only.
Both the fluid solver and DEM are parallelized for use with multi-
processor systems [25,26].

2.1. Particle governing equations

The motion of each particle is tracked based on Newton's Law of
motion as follows:

mp
dv
→

p

dt
¼ Vp ρp−ρg

� �
g
→ þ F

→

p;Drag þ F
→

p;Collision ð1Þ

Ip
dω
→

p

dt
¼ T

→

p;Collision ð2Þ

where mp; v
→

p;Vp; F
→

p;Collision are the particle mass, velocity, volume,
and collision forces, respectively. Ip;ω

→
p; T

→

p;Collision represent particle
moment of inertia, particle rotational velocity, and total torque acting
on the particle, respectively. Integrating Eq. (1) in time advances the
linear position of the particle whereas integrating Eq. (2) updates the
angular motion of the particle at each time step.

2.1.1. Particle–particle collision formulation
The soft sphere model handles particle–particle collisions as finite

particle overlaps. Fig. 2 shows the entire mechanism. Using the overlap,
the inter-particle forces are calculated based on a linear spring analogy
in the normal and tangential directions respectively. An additional
dashpot arrangement is present in parallel to the springs. The deflection
of the particles after a collision is governed by the spring, whereas the
inelasticity of collisions is taken care by a damper through energy dissi-
pation. An additional sliding element is placed in series with the spring
mass damper in the tangential direction. The slider allows the particles
to slide against each other as well, limiting themaximummagnitude of
the tangential force. Spring constants and damping coefficients in the
normal and tangential directions are used to calculate the normal and
tangential forces respectively due to the particle overlaps. The following
equations are used for the inter-particle collisions. The equations deal
with the motion of particle p when it collides with particle q.

f
→

n;pq ¼ −kn δ
→

n;pq−ηn v
→

n;pq ð3Þ

f
→

t;pq ¼ −kt δ
→

t;pq−ηt v
→

t;pq ð4Þ

where f
→

n;pq; f
→

t;pq; kn; kt are the normal force, tangential force,
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