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A grinding circuit simulation combined with ball weal law was used to determine the optimum composition
of the make-up ball sizes in tumbling ball mills. It was found that the optimum composition depends on var-
ious factors, including the feed size, the product size, the mill diameter and the breakage parameters. In all
cases, binary mixtures of two ball sizes (50.8 mm and 25.4 mm) performed better than a mixture of the
three ball sizes. An equation therefore could be developed for calculating the optimum composition of the
make-up balls as a function of various parameters.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

The ball size is one of the critical factors for determining themill per-
formance of ball mills. It is well known that larger balls are needed for
the effective breakage of large-size particles, whereas smaller balls are
more effective for the breakage of fine particles. Therefore, it is a com-
mon practice in industry to use a mixture of balls rather than balls of
a single-size to ensure the efficient grinding of materials of various
sizes in themill. Various formulae have been proposed for the selection
of the ball size [1,2]. However, as a group, they are not entirely satisfac-
tory because the optimum mixture of balls depends on the feed size as
well as the product size. Further, the ball size distribution in the mill is
not a simple parameter that can be controlled directly, as it depends
on the make-up ball charge and wear rate. Therefore, the industrial
practice of determining the make-up ball sizes comes down to experi-
ence. However, there is a great deal of information that describes the
variation of the grinding kinetics with the ball size and the ball wear ki-
netics. It is possible then to incorporate this information into a grinding
model and investigate the effect of the make-up ball size on the mill
performance with various feed and product specifications.

Concha et al. [3] was the first to combine a grinding circuit model
with a ball wear model to optimize the make-up ball charge. With an
optimization algorithm, the optimum make-up was calculated to

perform a given task. However, their work was based on one set of
milling conditions, one set of a feed size distribution and breakage
characteristics, and one mill diameter. All of these variables are
potentially significant factors influencing the optimum choice of
make-up balls. In this study, a more comprehensive investigation
was conducted to delineate the effect of variables, specifically the
breakage parameters, the feed size, the product size, and the mill di-
ameter, via a grinding circuit simulation combined with a ball wear
model.

2. Theory

2.1. Kinetic grinding model

A fundamental understanding of the breakage process was devel-
oped using the size–mass balance or population balance approach
analogous to the chemical reactor design for first-order reactions.
This approach is based on experimental batch grinding results
which typically demonstrate that the rate of the breakage of a mate-
rial of a size within a

ffiffiffi
2

p
sieve interval follows a first-order breakage

law. Symbolically, this is expressed as

dwi tð Þ
dt

¼ −Siwi tð Þ ð1Þ

where Si is the specific rate of the breakage of size i, and wi(t) is the
mass reaction of size i at time t. Therefore, S is the equivalent of a
first-order chemical rate constant.

Fig. 1 shows the typical variation of the S values with particle size
xi for a given ball diameter. It can be seen that the S values increase
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with size, but reach a maximum and then decrease as the particles
become too large to be broken efficiently by the grinding media.
This relationship can be fitted empirically to an equation which con-
sists of two functions [4]:

Si ¼ A
xi
xo

� �α 1

1þ x
μ

� �Λ : ð2Þ

The first part of the equation is a power function which gives a
straight line on a log–log scale. α is the slope of the curve in the small-
er region and A is the S value for the standard size, xo. The second part
of the equation is a log-logistic function representing deviation from
the straight line relationship. It has a value of 1 for smaller sizes and
approaches 0 as the size becomes very large. μ is the particle size at
which the value is 0.5 and Λ is a positive number which is an index
of how rapidly the S values fall as the particle size increases.

The breakage of a uniformly sized particle results in the production of
an entire set of smaller product sizes, thus requiring a description for this
distribution of sizes. Themean set of sizes produced by primary breakage
before re-fracture occurs is termed the primary breakage distribution, bij,
defined as the weight fraction of broken products from size interval j
which appears in size interval i. The breakage distribution is often used
in the cumulative form, Bij = ∑ k = n

i bkjwhich is the cumulativeweight
fraction of material broken from size interval j which appears less than
the upper size of size interval i.

The values of the primary breakage distribution are often found to
be insensitive to the milling conditions such as the media and powder
loading. For somematerials, the curves of Bij fall on top of one another
for all values of jwhen Bij is plotted versus the relative size xi/xj. This is
termed the ‘normalized’ Bij, and it means that all of the particles break
into a fragment distribution with dimensional similarity; that is, the
weight fraction of the product less than, for example, half of the
breakage size is constant for all breaking sizes.

Austin and Luckie [5] describe a mathematical technique for char-
acterizing the typical breakage distribution, as shown in Fig. 2. The
values of Bij are fitted by an empirical function made up of the sum
of two power functions [4]:

Bij ¼ ∅ xi−1

xj

 !γ

þ 1−∅ð Þ xi−1

xj

 !β

: ð3Þ

Here, γ is the slope of the small size end of the distribution, ∅ is
the extrapolated intercept of this end, and β is the slope of the
upper part of the curve, as depicted in Fig. 2. These parameters de-
pend on the characteristics of the material being ground, but are
often found to be independent of the milling conditions.

2.2. Grinding circuit simulation

The size reduction process can be described by a general size–mass
balance equation through the transfer function, dij, as follows [4]:

pi ¼
Xi
j¼1

dijf j i b j b 1: ð4Þ

In this equation, dij is the weight fraction of the feed of size j trans-
ferred by breakage to product of size i, pi is the weight fraction of the
product of size i and fj is the weight fraction of the feed of size j. For
continuous milling, residence time distribution models can be incor-
porated into the dij values, taking the following form [4]:

dij ¼
ej; i ¼ jXi−1

k¼j

cijcjk ek−ej
� �

; i N j

8><
>: ð5Þ

cij ¼

−
Xi−1

k¼i

cijcjk; i b j

1; i ¼ j
1

Si−Sj

Xi−1

k¼j

Skbikckj; i N j

8>>>>>><
>>>>>>:

ð5aÞ

ej¼∫
∞
0 e

−Sjtψ tð Þdt: ð5bÞ

Here, ψ(t) is the residence time distribution function. It is conve-
nient to represent the RTD in a functional form. Various forms have
been used to describe the RTD of grinding mills. This includes the sin-
gle fully mixed, the m equal fully mixed model and the axial mixing
model [4]. Among these models, the one-large/two-small fully
mixed reactor-in-series model was found to fit all the data reasonably
well [6]. This model gives

ej ¼
1

1þ Sjτ1
� �

1þ Sjτ2
� �2 ð6Þ

where τ1 is the mean residence of the first reactor, and τ2 is the mean
residence time of the second and third reactor having an equal size.

This equation allows the calculation of the product size distribu-
tion from a mill once dij is determined. The calculation of dij includes
the aforementioned S and B functions, which can be determined in
a laboratory batch mill. However, these parameters are sensitive
to milling conditions such as the mill rotational speed, ball filling,
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Fig. 1. Variation of the specific rates of breakage with particle sizes.
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Fig. 2. Cumulative breakage distribution and its characteristic parameters.
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