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The discrete elementmethod is amethod for simulation of a particle system. For the “soft-sphere”mechanism of
particle interactions, there are several models for normal contact forces, namely linear spring–dashpot, and
non-linear damped Hertzian spring–dashpot, among others. The focus of this paper is to determine the normal
spring stiffness coefficient of the linear model through the numerical solution for the overlap between particles
in non-linear models. The linear spring stiffness is determined using equivalence between the linear and the
nonlinear models. Using the MFIX computational code, the proposed approach is applied in the numerical sim-
ulations of two problems: single freely falling particle and bubbling fluidized bed. A method based on mean
dimensionless overlap is suggested as an initial estimate to determine the normal spring stiffness coefficient.
Other possible methods for computing the stiffness coefficient are also discussed in this work, e.g., maximum
dimensionless overlap and dimensionless contact duration.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The modeling of particulate systems has been an important focus of
research worldwide, as these are fairly common in nature, such as rain
drops in air, snowfall, and several industrial processes. Examples of the
latter include: riser reactors; bubble column reactors; liquidized bed
reactors; scrubbers; and dryers, among others. Applications ofmodeling
of granular flows are usual in dune erosion, in processing pharmaceuti-
cal powders, and in industrial mills, among others. The behavior of
those flows can be predicted experimentally, theoretically, and compu-
tationally. In some cases, the laboratory model needs to have a scale
that is different from an original plant. In such case the theoretical or
computational model can be a tool for extrapolation to the scale of the
problem.

In gas–solid flow problems, the continuum equations can be solved
for both phases and it is called Eulerian–Eulerian or two-fluid method.
When the gas phase is considered as a continuum and the dispersed
phase as discrete, the approach is called Eulerian–Lagrangian.

Alder andWainwright [1] introduce themolecular dynamicmethods
as a methodology to study the macroscopic behavior of particles.
The techniques developed for molecular dynamics can be adapted to
discrete particle models, including the formulation of particle–particle
interactions. The molecular dynamics model together with the contact

mechanisms is a method called discrete element method (DEM). The
discrete element method approach has been applied in several areas,
e.g., in geotechnical mechanics by Cundall and Strack [2], pneumatic
transport technology by Tsuji et al. [3], fluidized beds by Tsuji et al. [4],
tumbling ball mills by Mishra and Rajamani [5], segregation of granular
materials by Ketterhagen et al. [6], cohesive particlesflows byWeber [7],
and solidsmixing in gas-fluidized beds by Rhodes et al. [8], among other
studies. A comprehensive literature review is found in the works pub-
lished by Zhu et al. [9,10], which summarize the studies based on dis-
crete particle simulation.

The assumption in DEM is that during a small time step, the distur-
bances cannot propagate from any particle to others except to its imme-
diate neighbors. Based on the mechanism of particle interaction, the
contact forces can bemodeled either as “hard-sphere” or as “soft-sphere”
[11]. The contact forces are included in the Newton's second law of mo-
tion to determine the dynamic of the particles. In a hard-sphere model,
the trajectories of particles are determined by momentum conserving
binary collisions. Campbell and Brennen [12] reported the first hard-
sphere discrete particle simulation used to study granular systems.
Several studies have been developed using the hard-spheremodel. A dis-
crete particle simulation using a hard-sphere model of a bubble and slug
formation in a two-dimensional gas-fluidized bedhas beendevelopedby
Hoomans et al. [13]. Goldschmidt et al. [14] made a comparison between
hard-sphere model, two-fluid model and experiments in a pseudo-
two-dimensional gas-fluidized bed. Lu et al. [15] investigated solid
motions in a two-dimensional bubbling fluidized bed using discrete
hard-sphere model. Müller and Pöschel [16] pointed out some limita-
tions of hard-spheremodel for granular dynamics depending on thema-
terial and system parameters.
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In soft-sphere models, the particles are allowed to overlap slightly
and the contact forces are subsequently calculated from the deformation
history of the contact using a contact-force scheme. The soft-sphere
method for granular dynamics simulations was developed by Cundall
and Strack [2]. In the soft-sphere approach there is a mapping between
the contact forces during the impact and dynamic systems. A detailed
study for the impact theory is found in the book by Goldsmith's [17].
The elastic mechanism in the impact modeling is first given by Hertz
[18,19]. Timoshenko and Goodier [20] give a classical presentation of
theory of elasticity. The energy lost during impact can be associated
with damping mechanisms during the contact period. Simo and Hughes
[21] present the theoretical foundations of inelasticity, its numerical for-
mulation, and a description of computational algorithms for classical
plasticity, viscoplasticity, and viscoelasticity material models. Several
schemes have been proposed in the literature for modeling the
contact-force, such as the one proposed by Walton and Braun [22] that
uses two different spring constants to model the energy dissipation in
thenormal and tangential directions to examine the effects of inelasticity
and friction on shearing two-dimensional assemblies of disks. Hunt
and Crossley [23] discuss the Kelvin–Voigt model and introduce a new
non-linear damping term for the impacts between solid bodies. Yigit
et al. [24] compare spring–dashpot models for impact modeling with
experimental data for a radially rotating flexible beam.

The linear model for contact forces is widely used in DEM simula-
tions (see e.g. [25–29]). The main reason is that the model is simple
with analytic solution for the collision parameters, and this model is
less computationally expensive comparing to the non-linear models.
In the linear method, we need to specify values for the spring stiffness
and damping coefficients. Shäfer et al. [30] describe that in principle,
the linear spring dashpot model has no free parameters, since spring
stiffness and damping coefficients can be set adjusting normal restitu-
tion coefficient and contact duration to the corresponding experi-
mental values exhibited by a given material in a velocity range. The
relationships for spring stiffness and damping coefficient can be de-
rived as a function of the normal restitution coefficient and contact
duration (e.g. Hoef et al. [26], Shäfer et al. [30]). Stevens and Hrenya
[31] discussed criteria to choose typical input parameters (e.g., spring
constant and dashpot coefficient) based on an equivalent estimated
collision time. This approach is preferred for dense systems which
lead to large contact times ([31,32]).

For the linear model, in case we only have the value of normal resti-
tution coefficient, we can compute only the damping coefficient for the
linear method using an analytic expression (see Shäfer et al. [30]). The
value for the stiffness coefficient can be estimated by using known
numerical experiments, or other approach, such as equivalence be-
tween linear and non-linear models. In the literature, there are various
non-linear models for prediction of collision parameters during normal
impacts (e.g. Tsuji et al. [3], Hunt and Crossley [23], Kuwabara and Kono
[33]). The conservative elastic force in these models is computed based
on Hertz's theory ([18,19]) and the non-linear stiffness coefficient can
be estimated with material properties as Young modulus and Poisson
ratio. The basic difference between these non-linearmodels is the com-
putation of the non-conservative damping force. Tsuji et al. [3] consider
a damping force proportional to the fourth-root of the overlap for sim-
ulating cohesionless particles in a horizontal pipe. Hunt and Crossley
[23] consider a continuous force at the start and the end of the contact.
Kuwabara and Kono [33] proposed a damping force proportional to the
square-root of the overlap for the collision of viscoelastic spheres.

There are several studies that present equivalence between linear
and non-linear models. Lan and Rosato [34] use an equivalent maxi-
mum strain energy for a linear normal loading stiffness evaluation.
The authors assume that the incident kinetic energy is stored in
Hertzian elastic strain energy and the normal loading stiffness is
obtained when this nonlinear strain energy is equated to the linear
strain energy. Lan and Rosato [35] use a limited overlap approach
for determining the stiffness coefficient. The linear normal loading

stiffness value is associated with the maximum normal overlaps be-
tween contacting spheres, for example, an overlap based on percent-
age of the particle diameter. Dury and Ristow [36] also determine a
value for linear normal stiffness based on a limited overlap computed
by a percentage of the sum of radii of two particles. Buchholtz and
Pöschel [37] relate the linear normal stiffness with Young modulus
characterizing the elastic restoration of the spheres. Antypov and
Elliott [38] map the non-linear spring–dashpot model onto the linear
model adjusting the linear spring constant with nonlinear ones.

The focus of this paper is to determine the normal spring stiffness
coefficient of the linear model through the numerical solution for the
overlap between particles in non-linear models. The linear spring
stiffness is determined using equivalence between the linear and
the nonlinear models. The equivalence process can be performed by
three methods, i.e., maximum dimensionless overlap, dimensionless
contact duration, and mean dimensionless overlap. Using the MFIX
code, the proposed approach is applied in the numerical simulations
of two problems: (a) single freely falling particle; and (b) bubbling
fluidized bed. In the problems analyzed in this work (simple contact
between particle–particle and particle–wall and monodisperse gas–
solid flows), a method based on mean dimensionless overlap is sug-
gested as an initial estimate to determine the normal spring stiffness
coefficient.

2. Gas–solid mathematical model

The open source code MFIX (“Multiphase Flow with Interphase
eXchanges”) [39,40] developed at NETL (“National Energy Technolo-
gy Laboratory”) has been widely used to simulate hydrodynamics,
heat transfer and chemical reactions occurring in bubbling and circu-
lating fluidized beds. The gas-phase can be treated as continuum
and modeled by the fundamental equations of mass and momentum
conservation. The solid phases can be modeled as a continuum phase
in a two-fluid model (TFM) where constitutive relations for the trans-
port coefficients are given in terms of hydrodynamic variables.
Enwald et al. [41] and Ishii and Hibiki [42] present a description to
derive a closed two-fluid model applicable to non-reacting gas–solid
flows. The solid stress equation in viscous regime can be modeled
based on Kinetic Theory for Granular Flows (KTGF) (see Lun et al.
[43], Gidaspow [44], Agrawal et al. [45]). In the plastic flow regime,
the solid stress can be described by adopting theories from the
study of soil mechanics (see [46–49]). Recently, a constitutive
model with microstructure evolution for flow of rate-independent
granular materials has been developed by Sun and Sundaresan [50].
An overview of the granular material flows is found in the work of
Campbell [51]. The solid phases can also be treated as disperse phases
(see Tsuji et al. [3]). In this case, the solid phases are represented
by particles and the motion of the particles is modeled by the solution
of Newton's law applied in each particle. MFIX code is used in
this work for the numerical simulations and this code supports both
approaches: Two-fluid method (TFM) ([39,40]) and fluid-DEM ap-
proach ([27,52,53]). Next, we describe the governing equations for
the latter approach (Eulerian–Lagragian or fluid-DEM) used in the
present work.

Considering an isothermal gas–solid flow without chemical reac-
tions, the mass, momentum, and constitutive equations for the gas
phase are formulated as follows. The continuity equation for the gas
phase is:

∂
∂t
�
�gρg

�
þ∇⋅

�
�gρgvg

�
¼ 0 ð1Þ

where �g, ρg and vg are respectively the gas-phase void fraction, the
density of gas phase and the gas-phase velocity.
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