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We apply a recent one-dimensional algorithm for predicting random close packing fractions of polydisperse
hard spheres [Farr and Groot, J. Chem. Phys. 133, 244104 (2009)] to the case of lognormal distributions of
sphere sizes and mixtures of such populations. We show that the results compare well to two much slower
algorithms for directly simulating spheres in three dimensions, and show that the algorithm is fast enough to
tackle inverse problems in particle packing: designing size distributions to meet required criteria. The
one-dimensional method used in this paper is implemented as a computer code in the C programming lan-
guage, available at http://sourceforge.net/projects/spherepack1d/ under the terms of the GNU general public
licence (version 2).

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In granular and mesoscopic systems, various material properties
depend on the close packed volume fraction of the constituent particles.
For example, in the Krieger–Dougherty [1] relation

ηr ¼ 1−ϕ=ϕmaxð Þ− η½ �ϕmax ; ð1Þ

used for estimating the viscosity of a suspension of hard particles in a
Newtonian solvent [where ηr is the viscosity relative to that of the sol-
vent, ϕ the volume fraction of the particles and [η] a number (equal to
2.5 for spheres)], the viscosity is predicted to diverge at the packing frac-
tionϕmax. Thevalueofϕmaxmaycorrespond to a randomarrangement at
low shear rates or an aligned ‘string phase’ at high shear rates [2,3], but
in either case, Eq. (1) implies that this quantity influences the viscosity
over the whole range of volume fractions. On the other hand, deform-
able particles may be packed above the Kreiger–Dougherty ϕmax, and
their material properties, such as yield stress [4,5], can be deduced
from how far above close packing the system lies.

For many colloidal and granular systems, the constituent particles do
not form regular, crystalline arrays, but instead are rather randomly ar-
rangedwhen a jammed state is reached,which represents a close packed
arrangement. The concept of random close packing (‘RCP’) was first
clearly described for monodisperse smooth hard spheres by Bernal and
Mason [6], and the packing of smooth spheres remains an important ap-
proximation for less ideal systems.

For themonodisperse case, there has been controversy over the def-
inition (and even existence [7]) of RCP, as crystallization to a face
centred cubic arrangement [8,9] is possible when sufficient opportunity

to explore the configuration space is allowed. Theoretical work on ran-
dom jammed states [10] has clarified these issues, but the simplest ev-
idence for a well-defined RCP state is that different packing algorithms
generally converge to statistically very similar configurations and pack-
ing fractions. One can therefore define RCP operationally, as the out-
come of such a packing algorithm. Various algorithms have been
explored: Conceptually the simplest is the Lubachevski–Stillinger
(‘LS’) algorithm [11] in which spheres at a low volume fraction are
placed in a box with periodic boundary conditions, by random sequen-
tial addition. They are then given random initial velocities and permit-
ted to move and collide elastically while their radii grow at a rate
proportional to their initial radius, until a jammed state is reached.
This algorithm takes three input parameters: the number of spheres
Ns, the initial volume fraction ϕinit and the ratio δ of the radial growth
rate to the initial particle size. For large Ns, the final packing fraction is
only very weakly dependent on δ and ϕinit. Usually fairly large values
(around δ = 0.1) are chosen, to avoid local crystalline regions. Even
with efficient methods for identifying neighbours however, the LS algo-
rithm converges rather slowly to the jammed RCP state because of the
diverging number of collisions as this point is approached.

Other authors have therefore modified the dissipative particle dy-
namics [12] method and simulated smooth, soft (Hertzian) spheres,
with radial dissipative forces. In the limit of zero confining pressure,
these also behave as hard spheres and give extremely similar results
to the LS algorithm, although the amount of radial dissipation (or equiv-
alently the particle size) does have a very weak effect on the final RCP
volume fraction [13].

Inmoving towardmore realistic systems, there are three constraints
in the above-mentioned models which one can imagine removing: the
smoothness of the particles (that is to say lack of sliding friction), their
spherical shape, and monodispersity.
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We note in passing that monodisperse hard spheres, but with the
addition of sliding friction, have been considered in the literature, and
this leads to a family of randomly packed states [14], with RCP (apply-
ing to smooth spheres) and random loose packing (highly frictional
spheres) being the extreme ends of this spectrum. Corresponding
packing fractions are in the range 0.64 to 0.53. We also note that
RCP of non-spherical, but smooth particles have also been extensively
studied; for example in Ref [15], different smooth superelliposids are
taken as the objects to be packed.

However, the work reported here will cover only the case of poly-
disperse smooth spheres. A certain amount of theoretical effort has
been devoted to this area, notably Refs. [16–18]. The last of these ap-
pears to provide a flexible approximation scheme that could be ap-
plied to fairly general size distributions; although the authors note
that for bidisperse sphere size ratios greater than 2, the accuracy de-
clines. Despite these advances, all the theoretical approaches are to
some extent heuristic, requiring comparison to numerical data.
Therefore the most obvious route forward, which is to generalize
the numerical packing algorithms that were developed for the mono-
disperse case, remains necessary. In the present paper, the two sets of
3d simulation results we present are based on a hard sphere method
(a modification of the LS algorithm [19]) and a soft particle (‘SP’) al-
gorithm (taken directly from Ref. [13]).

However, all these direct simulation methods are computationally
rather expensive, typically taking hours or days to obtain high quality
results. Not only is it inconvenient to have to bring to bear a complex
and expensive algorithmwhen one may only be interested in the ran-
dom packing of a relatively simple size distribution, but the slow time
for solution makes solving inverse problems infeasible. By an ‘inverse
problem’ we mean searching for a size distribution which satisfies
certain packing criteria, such as finding the largest RCP volume frac-
tion given a fixed minimum and maximum size for the particles, or
other problems of a similar nature.

Recently however, a quick and apparently quite accurate algo-
rithm [13] has been described which attempts to approximate the
RCP fraction of any distribution of sphere sizes, by mapping the prob-
lem onto a one dimensional system of rods. This can allow the RCP
volume fraction to be obtained in around one second (see Table 1),
and therefore makes routine evaluation of these numbers relatively
easy. However, some care is required to implement the algorithm
for general distributions of sphere sizes, and no reference implemen-
tation code has hitherto been published.

This paper therefore aims to demonstrate that this one dimension-
al ‘rod-packing’ (RP) algorithm can be implemented efficiently for
typically encountered sphere size distributions, and also to compare
the results to the more traditional direct simulation approaches
above for calculating RCP volume fractions.

2. Log-normal size distributions

2.1. Analysing experimental data

Consider a distribution of sphere sizes. Let the number-weighted dis-
tribution of diameters be given by P3d (D), so that the fraction of the

number of spheres with diameters between D and D + dD is P3d (D)dD.
The volume-weighted distribution of diameters will then be Pvol (D) ∝
D3P3d (D), while the surface- and diameter-weighted distributions will
be respectively Psurf (D)∝ D2P3d (D) and Pdiam (D)∝ DP3d (D).

For any such number-weighted size distribution P3d (D), one de-
fines an m'th moment by

μm≡∫
∞
0D

mP3d Dð ÞdD: ð2Þ

It is often the case that the volume-weighted mean diameter d4,3
and the surface-weighted mean diameter d3,2 are experimentally ac-
cessible. They are defined in terms of the moments via:

d4;3≡μ4=μ3 ð3Þ

d3;2≡μ3=μ2: ð4Þ

In studies of emulsions [20,21] it is frequently found that the
volume-weighted size distribution of droplets is log-normal, and this
can also be a good approximation for granular materials, such as sedi-
ments [22,23]. In general, if Pvol (D) is log-normal with a ‘width’ σ, it
will have the form:

Pvol Dð Þ ¼ 1
Dσ

ffiffiffiffiffiffi
2π

p exp −
ln D=D0;vol

� �h i2
2σ2

8><
>:

9>=
>;; ð5Þ

whereD0,vol is a reference diameter setting the scale. Performing the in-
tegrals of Eqs. (3) and (4), we see that

D0;vol ¼ d3;2d4;3
� �1=2

: ð6Þ

We note in passing that one could alternatively define a log-normal
distributionwith particle volume, rather than diameter, as the indepen-
dent variable; in which case, for the same physical distribution, the
volume-based lognormal width σv will be 3σ.

Returning to diameter as the independent variable, in experimental
work it is usual to plot the volume-weighted diameter distribution on a
logarithmic scale, showing the fraction of the spheres' volume per de-
cade of diameter. If we define x as the base ten logarithm of the diame-
ter measured in meters (so x counts the number of decades)

x≡log10 D=mð Þ; ð7Þ

x0≡log10 D0;vol=m
� �

; ð8Þ

then the distribution by decade corresponding to Pvol (D) is

Pdec
vol xð Þ≡ dD

dx
Pvol Dð Þ ¼ ln 10ð Þ

σ
ffiffiffiffiffiffi
2π

p exp − x−x0ð Þ2
2 σ=ln 10ð Þð Þ2

" #
: ð9Þ

We see that Pvoldec(x) has a simple normal distribution in x, and the
full width (in decades) at half maximum is very close to σ itself (more
precisely 1.023σ).

2.2. Weighted distributions

A little algebra shows that if Pvol (D) is log-normally distributed, then
so are the number-, diameter- and surface-weighted distributions. That
is to say they have exactly the same functional form as Eq. (5), with the
samewidth σ, but different values of the reference diameter. For exam-
ple the number-weighted diameter distribution is

P3d Dð Þ ¼ 1
Dσ

ffiffiffiffiffiffi
2π

p exp − ln D=D0ð Þ½ �2
2σ2

( )
; ð10Þ

Table 1
Simulation times t in milliseconds for the RP algorithm applied to a lognormal distribu-
tion of spheres, implemented on a 3.2GHz Intel Pentium processor for various values of
rod number N and width σ. The predicted RCP volume fraction is ϕRP.

σ N ϕRP t/ms

0.0 16,000 0.643485 40
0.5 16,000 0.707259 479
1.0 16,000 0.801339 507
0.0 64,000 0.643485 331
0.5 64,000 0.707262 2151
1.0 64,000 0.801368 2644

29R.S. Farr / Powder Technology 245 (2013) 28–34



Download English Version:

https://daneshyari.com/en/article/6678310

Download Persian Version:

https://daneshyari.com/article/6678310

Daneshyari.com

https://daneshyari.com/en/article/6678310
https://daneshyari.com/article/6678310
https://daneshyari.com

