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Flow behavior of particles in the riser was simulated using a computational fluid dynamics (CFD). Conserva-
tion equations of mass and momentum for solid phase were solved on the basis of kinetic theory of rough
spheres (KTRS). The fluctuation kinetic energy of particles is introduced to characterize the random motion
of particles as a measure of the translational and rotational velocity fluctuations. The distribution of concentra-
tion and velocity of particles are obtained in a riser. The simulated concentration of particles agreed reasonably
with the available experimental results. The random-motion kinetic energy of inelastic rough particles is shown
to be affected by the particle restitution coefficient and roughness. The effects of the coefficient of normal resti-
tution and roughness on the distribution of solid phase in the riser are studied. In this case, the influence of the
coefficient of normal restitution is weak in the riser using KTRS model.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Flow behavior of gas and particles in fluidized beds is predicted by
means of computational fluid dynamics (CFD) tools since CFD models
provide a more detailed data profile as a function of space and time.
Among different CFD models, the Eulerian–Eulerian (two-fluid) model
with kinetic theory of granular flow (KTGF) is the most applicable ap-
proach to compute gas–solid flow in circulating fluidized beds [1,2]. In
the two-fluid model, the particles are treated as a continuum as in the
gas phase. Thus, there are two interpenetrating gas and solid phases
where each phase is characterized by its own conservation equation of
motion. The interactions between the two phases are expressed as addi-
tional source terms added to the conservation equations. The kinetic
and collisional momentum transfer due to the collisions of particles is
modeled on the basis of the kinetic theory of granular flow (KTGF).
This treatment of the particulate phase uses classical results from the
kinetic theory of dense gases [3]. This theory gives closures for the rheo-
logic properties of the fluidized particles as a function of the local particle
concentration and the fluctuatingmotion of the particles owing to parti-
cle–particle collisions. As kinetic energy of the particles is lost in colli-
sions between pairs of particles, their inelasticity is taken into account
through the coefficient of normal restitution. Modeling of the collisional
and kinetic transport mechanisms for the momentum and fluctuating
kinetic energy of the particles yields a description of the momentum
transport properties as a function of the granular temperature. Detailed
discussion on the development of KTGF is provided by Gidaspow [1].

In the original KTGF, only smooth spheres in translational motion
are considered, and therefore collisions are described with a single
constant coefficient of normal restitution, e. In reality, particles are

rough and are rotating. This implies that an accurate model consider-
ing the effect of friction on motion of particles is required. During a
collision of rough particles, the fluctuation energy is dissipated from
inelasticity and frictions. The frictional particle collision also results
in the particle rotation which gives additional loss of the energy. As a re-
sult, particles can rotate with angular velocity ω under rapid rates of de-
formation. The model accounting for friction during collisions assumes,
apart from a constant coefficient of normal restitution e, a constant coef-
ficient of tangential restitutionβ [4].While e is a positive quantity smaller
than or equal to 1 (the value e=1 corresponding to elastic spheres), the
parameter β lies in the range between −1 (perfectly smooth spheres)
and 1 (perfectly rough spheres). The total kinetic energy is not conserved
in a collision, unless e=1 and β=±1.0. This implies that an accurate
model should be based on at least two coefficients, normal and tangential
restitution coefficients in order to be valid for the collision of particles. In
the kinetic theory for flow of identical, slightly frictional, inelastic spheres
proposed by Lun [5] and Jenkins and Zhang [6], two granular tempera-
tures of particles are involved. The first is translational granular tempera-
ture θt, which measures the energy associated with the translational
velocity fluctuations, defined as θt=bC2>/3, where C is the translational
velocity fluctuation of particles. The second is rotational granular temper-
ature θr, whichmeasures the energy associated with the angular velocity
fluctuations, defined as θr=(1/3m)IrbΩ2>, where Ir is themoment of in-
ertia,Ω is the angular velocity fluctuation andm is the mass of a particle.
The conservation equations include the mass, linear momentum, spin,
translational and rotational fluctuation kinetic energies of particles. The
kinetic energies associatedwithfluctuations in both translational velocity
and spinwere considered. Thus, the additional equations for angularmo-
mentum and rotational granular energy greatly increase the complexity
of the kinetic theory, and are often difficult to apply to general flows. Col-
lisionalmotion of rough inelastic sphereswas analyzed on the basis of the
kinetic Boltzmann–Enskog equation proposed by Goldshtein and Shapiro
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[7]. The Chapman–Enskog method is modified to derive the Euler-like
hydrodynamic equations for a system of moving spheres, possessing
constant roughness and inelasticity. The rough sphere model shows
that in contrast to conservative systems, energy is not equipartitioned
between the degrees of freedom in dissipative systems, even though
the ratio of translational and rotational energy approaches a constant
in a freely cooling system [8]. Herbst et al. [9] predicted the rotation-
al and the translational energy dissipation rates for spheres. They
employed solutions for the angular momentum balance and the rota-
tional energy balance for a steady homogeneous shearing and incorpo-
rated the influence of small friction on the exchange and dissipation of
translational fluctuation energy. Yoon and Jenkins [10] indicated the
changes in translational and rotational energies associated with either
a sticking or a sliding collision. The balance equations for mass, linear
and angular momentums, and translational and rotational energies
based on the Boltzmann equation were given. The ratio of rotational
to translational temperatures is evaluated as the rotational dissipation
term is approximated to be zero by ignoring terms involving unsteady
and inhomogeneous contributions, as if the flow is in a steady, homoge-
neous shearing state. Sun and Battaglia [11] implemented amodel from
kinetic theory for rapid flowof identical, slightly frictional, nearly elastic
spheres proposed by Jenkins and Zhang [6] into theMFIX CFD code [12].
In this model, the conservation of rotational granular energy is approx-
imately satisfied by requiring that the net rate of energy production for
the angular velocity fluctuations is zero. The influence of friction on the
collisional transfer of momentum and translational energy is negligible.
Only the dissipation rates for translational and rotational granular ener-
gy are influenced by friction. They found that the model captures the
bubble dynamics and time-averaged bed behavior. Shuyan et al. [13]
simulated flow behavior of particles in the bubbling fluidized bed
based on the kinetic theory for flow of dense, slightly inelastic, slightly
rough sphere proposed by Lun [5]. The simulated energy dissipation,
granular temperature, viscosity, and thermal conductivity of particles
exhibit non-monotonic tangential restitution coefficient dependencies
due to the energy losses resulting from particle collisions [14]. Santos
et al. [15] evaluate the collisional rates of change of the translational
and rotational granular temperature by means of a Sonine approxima-
tion. They found that the Maxwellian approximation for the granular
temperature ratio does not deviate much from the Sonine prediction
in both the homogeneous cooling state and the homogeneous steady
state. Recently, themultiphase kinetic theory has been proposed to con-
sider the rotation of particles with unequal masses and diameters [16].
Computations show that the rotation can alter the profiles of velocity
and concentration in a riser.

Recently,we proposed a kinetic theorymodel for rough spheres in the
bubbling fluidized beds [17]. In the model for kinetic theory of rough
spheres (KTRS), the particle average fluctuation kinetic energy is intro-
duced to govern the mechanism dominating kinetic energy transforma-
tion in flow of particles. KTRS takes into account transfer of particle
kinetic energy between their rotational and translational degrees of free-
dom, and also the total energy losses. The model of KTRS has the same
structure as that for frictionless spheres, i.e., only conservation of mass,
mean translational velocity and particle average fluctuation kinetic ener-
gy need to be considered. In present work, KTRS is used to predict flow
behavior of particles in a riser. Distributions of concentrations and veloc-
ities of gas and particles are predicted. Computed results are compared
with experiments measured by Knowlton et al. [18] and Herbert and
Reh [19] in risers.

2. Kinetic theory for granular flow of rough sphere

2.1. Governing equations

Considering an ensemble of identical rough spherical particles
with spherically symmetric mass distribution, the chaotic translation-
al and rotational motions are assumed in an effectively infinite spatial

domain. The fluctuation, C, in translational velocity and the fluctua-
tion, Ω, in angular velocity are defined as C=c−u and Ω=ω−ϖ,
respectively, where u and ϖ are the mean translational velocity and
the mean angular velocity. c andω are the instantaneous translational
velocity and the angular velocity of particles. The inertial properties of
each particle are characterized by the moment of rotary inertia Ir, or
dimensionless moment of inertia K ¼ 4Ir= mσ2

� �
. In particular, for

uniform spheres Ir ¼ 0:1mσ2 and K=0.4. The mean translational
fluctuation kinetic energy is 3mθt/2=mbC2>/2, and the mean rota-
tional fluctuation kinetic energy is 3mθr/2=IrbΩ2>/2, where θt and
θr are the translational granular temperature and rotational granular
temperature. The kinetic energy of random motion of particles, E, is
the sum of the translational kinetic energy and the rotational kinetic
energy. Thus, the particle fluctuation kinetic energy is

eo ¼ E
m

¼ b
1
3
C2 þ IrΩ

3m

2
>¼ θt þ θrð Þ ð1Þ

which shows that the kinetic energy involves two measures of the
strength of these fluctuations: the translational temperature, and the ro-
tational temperature. In contrast to the definition of fluctuation kinetic
energy by Goldshtein and Shapiro [7], the kinetic energy in Eq. (1) in-
cludes the translational and rotational contributions. Note that the total
granular temperature includes the translational granular temperature
and rotational granular temperature. The particlefluctuation kinetic ener-
gy e0 has the units of m2/s2. The definition used here is more convenient,
since the granular temperature is simply the variance of the measured
particle velocity distributions.

For a flow of solid phase, the conservation equations are derived on
the basis of the kinetic theory of granular flow. This treatment of the par-
ticulate phase uses classical results from the kinetic theory of dense gases
[3]. Details are found in Gidaspow [1]. Table 1 lists the equations for flow
of gas and solid phases used in present simulations [17].

In an Eulerian–Eulerian two-phase model, the governing equations
for the gas phase can be derived by using a suitable volume averaging
procedure. The continuity equations of gas phase and solid phase are
shown in Eqs. (T1-1) and (T1-2) without reactions. The gas phase mo-
mentum equation has the form shown in Eq. (T1-3) as the body force
equals to the gravitational acceleration, where the gas-phase stress ten-
sor τg is calculated according to Newton's expression of Eq. (T1-6) [1].
The last term on the left-hand side of Eq. (T1-3) represents the interfacial
momentum transfer. The momentum conservation equation for solid
phase is given by Eq. (T1-4), where τs is the stress tensor of particles.
The momentum exchange between gas phase and solid phase is repre-
sented by the term βgs(ug−us), where βgs is the drag force coefficient.
These equations are the same as that used in the original kinetic theory
of granular flow (KTGF) [1]. The correlations for βgs is a combination of
Eq. (T1-21) at the gas volume fraction less than 0.8 and Eq. (T1-22) at
the gas volume fraction greater than 0.8.

The conservation equation of solid fluctuation kinetic energy eo is
expressed by [17]

3
2

∂
∂t εsρseoð Þ þ∇⋅ εsρseousð Þ
� �

¼ ∇⋅ κs∇eoð Þ þ ∇psI þ τsð Þ
: ∇us−γs−Dgs−3βgseo: ð2Þ

The two terms on the left-hand side of Eq. (2) represent the accumu-
lation and convection of kinetic fluctuation energy, respectively. In the
right-hand side of Eq. (2), the first termmodels the conductive transport
of kinetic fluctuation energy. The second term describes the production
of kinetic fluctuation energy due to irreversible deformation of the
solid phase velocity field. The third term represents the dissipation of
the fluctuation energy due to inelastic particle–particle interactions.
The fourth term represents the exchange of the fluctuation energy due
to interphase momentum transport, and the last term representing the
dissipation due to interaction with the fluid.
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