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a b s t r a c t

The thermal convection is examined theoretically for fluids possessing significant thermal relaxation
time, characterizing the response of the heat flux and the temperature gradient to changes in one
another. Fourier's law breaks down for such fluids. Non-Fourier heat transport occurs in a wide range of
applications, including superfluid helium, fluids subjected to rapid heating, and strongly confined fluids.
The parallels between non-Fourier fluids and viscoelastic polymeric solutions are established. For
viscoelastic fluids, the constitutive equation for stress must be frame invariant, a condition that must also
hold for the constitutive equation for heat flux. The stability of conduction state is first reviewed, and the
convection state is obtained using a low-order dynamical system approach. The stability of steady
convection is analysed, and the Nusselt number is obtained as function of the Rayleigh and Cattaneo
numbers.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Heat transfer is typically described by Fourier's law, which is
given by

Q ¼ �KVT: (1.1)

Here, Q is the heat flux, K is the thermal conductivity of the
medium, and T is the temperature. When combined with the First
Law of Thermodynamics, Fourier's law predicts an infinite speed of
heat propagation. Physically, however, a disturbance in T must
travel at a finite speed that is determined by molecular interactions
[1]. One approach to remedy this problem has been to add a partial
time derivative to the left-hand side of Eq. (1.1), as in the case of the
MaxwelleCattaneo equation [2]. This results in a hyperbolic dif-
ferential equation, implying wave-like heat transport. This does not
necessarily solve the problem of instantaneous heat propagation,
however [3e5], since theMaxwelleCattaneo equation is not frame-
invariant and, as such, its application is restricted to non-
deformable media. Heat transport equations involving different
objective derivatives have been introduced in attempts to remedy
this situation. The most promising modification appears to be that
of [6], recently revisited by Ref. [7], whose use of Oldroyd's upper-
convected derivative [8] leads to the frame indifferent

CattaneoeVernotte equation,

t
dQ
dt

þQ ¼ �KVT (1.2)

where

dQ
dt

≡
vQ
vt

þ V$VQ � Q$VV�QV$V: (1.3)

t is the thermal relaxation time of the medium and characterizes
the relaxation of the heat flux to a new steady state following a
perturbation of the temperature field.

Coupled with the energy equation, this constitutive equation
yields a single equation for T(x,t), an advantage that other frame-
invariant formulations do not possess [6]. This equation replaces
Fourier's law whenever non-Fourier effects are relevant, collapses
back to Fourier's law when they are not, and can be applied to both
deformable and non-deformable media. In this paper, we refer to
fluids in which the effects of t are non-negligible as non-Fourier
fluids, while those in which the relaxation time can be ignored
are referred to as Fourier fluids.

Most practical problems involve media with relaxation times on
the order of picoseconds [9] and, in such cases, the Catta-
neoeVernotte equation reduces to the classical Fourier model.
There are systems, however, in which the relaxation time is not
negligible. Non-Fourier effects lead to thermal waves in superfluid
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liquid helium, referred to as second sound [10,11], and have been
increasingly observed in a variety of other systems as well. For
example at small lengths scales, the heat transport properties of
rarefied gases [12,13], and convection around MEMS devices have
been explained in terms of non-Fourier behaviour [14e16], and
non-Fourier contributions to heat transport have been predicted in
theories of granular flows [17,18], as well as nanofluids [19].

The importance of non-Fourier effects is characterized by the
ratio of the thermal relaxation time to the time scale for thermal
diffusion. If D is a characteristic length scale and k the thermal
diffusivity of the fluid, then the thermal diffusion time is D2=k. Non-
Fourier effects become significant when the ratio C ¼ tk=D2,
referred to as the Cattaneo number, becomes significant. C in-
creases relatively rapidly as D decreases, and so non-Fourier effects
are expected to be observable in very small systems such as micro-
and nanometer devices that involve heat transport and flow
[15,20e28].

There has been a limited amount of work done on convection
with non-Fourier heat transport [3,29e31]. In this paper, we
analytically investigate the linear stability of the steady conduction
state in a RayleigheB�enard configuration with C > 0, as well as the
heat transport and stability of the steady convection state that bi-
furcates from the conduction state.

2. Problem formulation

2.1. Governing equations and boundary conditions

Consider a thin layer of a Newtonian non-Fourier liquid of
infinite extent in the (x,y) directions, confined between isothermal
plates at Z ¼ 0 and Z ¼ D. The fluid layer is heated from below, with
the plates maintained at temperatures T0 þ dT and T0, respectively.
When dT is small, there is no flow and the heat transport across the
layer is solely due to conduction. As dT is increased, thermal
expansion causes the density of the liquid near the lower plate to
decrease. When the decrease in gravitational potential energy,
which results from raising the less-dense fluid to the top of the
layer, becomes larger than the energy dissipated by viscosity and
thermal diffusion, a convective flow develops.

The fluid density r is assumed to depend linearly on the tem-
perature T according to

r ¼ r0½1� aTðT� T0Þ�; (2.1)

where aT is the coefficient of thermal expansion and r0 is the
density of the fluid at T0. The fluid is assumed to be incompressible,
with specific heat at constant pressure cp, thermal conductivity K
and viscosity m. The fluid behaviour is described by equations for
the conservation of mass, linear momentum and energy, as well as
the constitutive equation for the non-Fourier heat flux. In this case,
the conservation equations are given by

V$V ¼ 0; (2.2)

r0ðVt þ V$VVÞ ¼ �VP� rgbz þ mDV; (2.3)

r0cpðTt þ V$VTÞ ¼ �V$Q ; (2.4)

where D is the Laplacian operator and the subscript t denotes
partial differentiationwith respect to time. Here V¼ (U, 0, W) is the
velocity vector, P is the pressure, g is the acceleration due to gravity,
and bz is a unit vector in the z-direction. In writing Eqs. (2.2)e(2.4)
we have used the Boussinesq approximation, which states that the
effect of the variations in density are negligible everywhere in the
conservation equations except in the buoyancy term of Eq. (2.3)

[32]. We take the heat flux to be governed by the Catta-
neoeVernotte equation introduced above, re-written here as

tðQ t þ V$VQ �Q$VVÞ ¼ �Q � KVT: (2.5)

We use freeefree boundary conditions and perfectly conducting
upper and lower plates, such that the boundary conditions are

WðX; Z ¼ 0; tÞ ¼ WðX; Z ¼ D; tÞ ¼ 0;
WzzðX;Z ¼ 0; tÞ ¼ WzzðX;Z ¼ D; tÞ ¼ 0;
TðX;Z ¼ 0; tÞ ¼ T0 þ dT; TðX; Z ¼ D; tÞ ¼ T0:

(2.6)

While other boundary conditions could be adopted, the freee-
free conditions are convenient due to the mathematical simplicity
of the corresponding solutions for V and T [33].

The base state of the system of Eqs. (2.2)e(2.5) with the
boundary conditions in Eq. (2.6) corresponds to no flow. Both the
transient and upper convective terms in Eq. (2.5) vanish in this
state, and transport of heat occurs simply by conduction. Conse-
quently, the temperature, pressure gradient and heat flux in this
state are given by

TB ¼ �ðZ=DÞdTþ T0 þ dT;

dPB=dZ ¼ �r0½1� aTdTð1� Z=DÞ�g;

QB ¼
�
0;K

dT
D

�
;

(2.7)

respectively, where the subscript B refers to the base state. The
problem is conveniently cast in dimensionless form by taking the
length, time and velocity scales as D; D2=k and k=D, respectively.
Let p ¼ D2=kmðP� PBÞ, q ¼ D=KdTðQ � QBÞ and q ¼ T� TB=dT be
the dimensionless deviations of the pressure, heat flux and tem-
perature from their values in the base state. Substituting these into
Eqs. (2.2)e(2.5) the dimensionless equations for these deviations
are

V$v ¼ 0; (2.8)

Pr�1ðvt þ v$VvÞ ¼ �Vpþ Raq ez þ Dv; (2.9)

qt þ v$Vq ¼ �V$qþw; (2.10)

Cðqt � vz þ v$Vq� q$VvÞ ¼ �q� Vq; (2.11)

where v ¼ (u, 0, w) is the dimensionless velocity vector. There are
two linear terms of non-Fourier origin in Eq. (2.11): the transient
term proportional to qt and the term involving vz. The non-
dimensional Prandtl number, Rayleigh number, and Cattaneo
number are given by

Pr ¼ n

k
; Ra ¼ dTaTgD

3

nk
; C ¼ tk

D2 ; (2.12)

respectively, where k ¼ K=r0cp is the thermal diffusivity.
The heat flux can be eliminated from Eqs. (2.10) and (2.11) by

taking the divergence of Eq. (2.11), using the identity
V$ða$VbÞ ¼ Va : Vbþ a$VðV$bÞ, where a and b are two general
vectors, and using (2.8) and (2.10). We obtain

C½qtt þ 2v$Vqt þ vt$Vq�wt þ v$Vðv$VqÞ� þ qt þ v$Vq�w

¼ V2q:

(2.13)

Since the problem is two-dimensional, we introduce the stream
function yðx; z; tÞ, such that u ¼ yz; w ¼ �yx: Finally, taking the
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