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a b s t r a c t

We address the problem of two-dimensional heat conduction in a solid slab whose upper and lower
surfaces are subjected to uniform convection. In the midsection of the slab there is a periodic array of
isothermal pipes of general cross section. The main objective of this work is to find the optimum shapes
of the pipes that maximize the Shape Factor (heat transport rate). The Shape Factor is obtained by
transforming the periodic array of pipes into a periodic array of strips, using the generalized Schwarz
eChristoffel transformation, and applying the collocation boundary element method on the transformed
domain. Subsequently we pose the inverse problem, i.e. finding the shape that maximizes the Shape
factor given the perimeter of the pipes. For large Biot number the optimum shapes are in agreement with
the isothermal case, i.e. circular for sufficiently small perimeters/heat transfer, and elongated towards the
surfaces of the slab for larger perimeters/heat transfer. Furthermore, for the isothermal case, we were
able to discover a new family of optimum shapes for large thickness of the slab and large perimeters,
which do not have their maximum width on the horizontal axis of symmetry. For small Biot number the
optimum pipes are flatter than the isothermal ones for a given perimeter. The flatness becomes more
apparent for larger perimeters. Most important, for large perimeters there exists a critical thickness
which is characterized by maximum heat transfer rate. This is further investigated using the finite
element method to obtain the critical thickness of a slab and the critical depth of the periodic array of
circular pipes.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this work we address the problem of heat conduction in a
solid slab embedded with a periodic array of isothermal pipes; the
surfaces of the slab are subjected to convection with a uniform/
constant convection heat transfer coefficient [1]. The shape of the
pipes is assumed unknown and themain objective of this work is to
find the shape that maximizes heat transfer. The particular
configuration is a classical heat conduction problem that arises in
connection with heating tubes, oil lines, steam distribution lines,
underground electrical power-line transmission, laser sintering
processes, in certain types of compact heat exchangers and solar

cells [2e9].
A similar problem has been addressed by Fyrillas [10] where,

however, the surfaces of the slab were assumed to be isothermal.
When the slab is subjected to uniform convection, Fyrillas & Stone
[11] showed that there exists a critical insulation thickness asso-
ciated with a slab embedded with a periodic array of isothermal
strips. Similarly, Fyrillas & Leontiou [12,13] also showed that there
is a critical thickness associated with a fin that is subjected to
uniform convection.

Following the analysis in Refs. [10,14e18], the physical domain is
transformed into a rectangular channel using the generalized
SchwarzeChristoffel transformation [19e22]. The heat transfer
problem in the transformed domain is addressed numerically using
the “singular” boundary element method [23e29].

As mentioned earlier, the main objective of this work is to pose
and solve a Shape Optimization problem, i.e. an inverse design
problem, where the objective function is the Shape Factor [1,30], i.e.
the total heat transfer rate, and the variable of the optimization is
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the shape of the pipe, which is parameterized though the param-
eters of the generalized SchwarzeChristoffel transformation.
Hence, using the parameters of the generalized SchwarzeChris-
toffel transformation, the Shape Optimization problem is posed as a
nonlinear programming problem (constrained nonlinear optimi-
zation [31]), which is solved numerically [32] to find optimum
shapes that maximize heat transfer. We should point out that the
application of the generalized SchwarzeChristoffel transformation
confines the Shape Optimization to simply-connected domains. For
general domains, one needs to consider a conformal transformation
for multiply-connected domains [22] that might not be available. In
such domains, although the direct problem can be solved in the
physical domain using the boundary element method [23] the in-
verse problem, i.e. the shape optimization problem, would be
intractable. It can be addressed by considering a more specific
geometric parametrization and use boundary element methods if
the governing PDE is the Laplace equation [33e36], or finite
element methods for more general problems [37e40]. Although it
is tempting to infer that conformal mapping techniques provide a
natural basis for Shape Optimization problems associated with the
Laplace equation in simply-connected domains, for general cases
one needs to consider more general formulations [41e43].

The case of a single pipe in an infinite domainwas treated in Ref.
[15] where it was shown that the circular shape is the optimum
shape for both maximization and minimization problems. In
addition it was shown that: (i) the heat transport ratemaximization
problem, for a given perimetric length, is equivalent (dual) to the
perimeter minimization problem for a given transport rate; and
that (ii) the heat transport rate minimization problem, for a given

area of the cross section, is equivalent (dual) to the area maximi-
zation problem for a given transport rate.

The duality of the shape optimization problems was also shown
to apply for the case of a single isothermal pipe embedded in a slab
(bounded domain), where the upper and lower surfaces of the slab
are maintained at a constant temperature [16], while the slab is
infinite in the horizontal direction. A circular shape is the optimum
shape in the limit of small transport rates, i.e. the thickness of the
slab is large. For larger transport rates, the optimum shapes tend to
elongate towards the surfaces of the slab for the Shape Factor
maximization problem, while it is elongated in the horizontal di-
rection for the Shape Factor minimization problem. It is interesting
to note that the optimum shape of the pipe does not extend beyond
the half thickness of the slab for the Shape Factor minimization
problem [44e46].

The case of a periodic array of isothermal pipes was treated in
Refs. [10] and [18]. In the former work, both surfaces of the slab
were assumed isothermal while in the latter, the lower surface was
assumed adiabatic. In general the results suggest that, for the Shape
Factor maximization problem, the optimum shapes are elongated
towards the isothermal surfaces of the slab because this leads to a
large temperature gradient due to the proximity of the pipe to the
isothermal surfaces of the slab, hence a high transport rate is
achieved. As far as the duality between the shape optimization
problems is concerned (described in the previous paragraphs), for a
periodic domain there is no rigorous prove of its existence. How-
ever, it has been justified through numerical simulations.

The existence of a critical thickness associated with a slab sub-
jected to convection and embedded with isothermal strips [11],
establishes that there is a significant difference between an
isothermal slab and a slab subjected to convection. Hence, in the
current work we investigate the optimum shape of the pipes when
the surfaces of the slab are subjected to convection. In the next
Section (x2), we describe briefly the numerical solution of the
problem, i.e. the conformal mapping technique and the boundary
element method. In Section x3 we pose and solve numerically the
Shape Optimization problem of finding the optimum shape such
that the heat transfer rate is maximized. In Section x4, using finite
element simulations, we verify the existence of a critical thickness
associated with a slab embedded with a periodic array of circular
pipes when the slab is subjected to convection. In addition it is
revealed that there exists a critical depth associated with pipes
embedded in an insulated slab. We summarize our findings in the
last Section.

2. Shape factor of a periodic array of isothermal pipes

The analysis of this section closely follows the definitions and
notation outlined in Ref. [10], where the surfaces of the slab were
assumed to be isothermal. In this workwe assume that the surfaces
of the slab are subjected to uniform convectionwith a uniform heat
transfer coefficient (h), hence thework considered in Ref. [10] is the
asymptotic limit of the present analysis for h / ∞ (large Biot
number, Bi / ∞), i.e. strong convection.

Consider heat conduction due to a periodic array of isothermal
(T1) symmetric pipes of general cross section, embedded at the
center of a solid slab. The temperature field is governed by the
Laplace equation (Fig. 1). The upper and lower surfaces of the slab
are subjected to convection with a constant convection heat
transfer coefficient (h) and a constant far-field temperature T∞ [1].
We non-dimensionalize lengths with the distance between two
consecutive pipes (L), i.e. the period, and the temperature by sub-
tracting T∞ and dividing by the temperature difference T1 � T∞. The
dimensional analysis leads to the following definition for the Biot
number Bi ¼ L h/k, where k is the thermal conductivity. In addition,

Nomenclature

Bi Biot number ¼ L h/k
G Green's function
h one half the thickness of the slab in the complex

domain
h convection heat transfer coefficient W/(m2 K)
H one half the thickness of the slab in the physical

domain (dimensionless)
k thermal conductivity W/(m K)
L dimensional distance between two consecutive

pipes (period, m). Length-scale used for non-
dimensionalization

P one half the perimeter of the pipe (dimensionless)
S shape factor (dimensionless)
T temperature, K
x,y coordinates of the physical plane (dimensionless)
z complex coordinate of the physical plane
zi vertices in the physical plane

Symbols
ai turning angles divided by p
x, h coordinates of the transformed domain
w ¼ x þ ih

complex coordinate of the transformed domain
wi image of zi vertices in the transformed domain

Subscripts
i related to the i-th vertex

Diacritic
∧ the variable is normalized with wN�1
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