ELSEVIER

Available online at www.sciencedirect.com

Proceedings of the Combustion Institute

Proceedings of the Combustion Institute xxx (2014) xxx-xxx

www.elsevier.com/locate/proci

Effect of non-thermal product energy distributions on ketohydroperoxide decomposition kinetics

C. Franklin Goldsmith[†], Michael P. Burke, Yuri Georgievskii, Stephen J. Klippenstein^{*}

Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

The decomposition of ketohydroperoxides (OQ'OOH) to two radicals is commonly predicted to be the key chain branching step in low-temperature combustion. The possibility of a direct decomposition of the OQ'OOH from its initially produced energy distribution is studied with a combination of master equation (ME) and direct trajectory simulations. The temperature and pressure dependent rate constants for the thermal decomposition of a ketohydroperoxide, HOOCH₂CH₂CHO, to four product channels were computed using RRKM/ME methods. Direct dynamics calculations were initiated from a transition state in the $O_2 + QOOH$ reaction network to understand the fraction of energy in that transition state that is converted into the internal energy of the OQ'OOH. A novel approach to solving the master equation is used to determine the probability that a vibrationally hot OQ'OOH either will be stabilized to a thermal distribution or will react to form new products. Under most conditions, the majority of vibrationally excited OQ'OOH will be quenched into a thermal distribution. At higher internal energies and lower pressures, however, a significant fraction of the hot OQ'OOH will decompose rather than thermalize. Proper interpretation of low-pressure experiments may require inclusion of vibrationally hot intermediates, particularly if a chemical kinetic mechanism is optimized against the low-pressure data.

© 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Keywords: Low-temperature ignition; Propane oxidation; Master equation; Direct dynamics; Non-Boltzmann effects

1. Introduction

In the low-temperature oxidation of alkanes, an alkyl radical, R, reacts with molecular oxygen to form an alkylperoxy radical, RO₂. Depending upon the temperature and pressure, some of the

* Corresponding author. Fax: +1 630 252 9292.

 RO_2 will decompose to form a mixture of HO_2 + alkene, OH + cyclic-ether, or OH + carbonyls. In the context of chain branching, however, the most important product from RO_2 is a transient hydroperoxyalkyl radical, QOOH, which is formed via internal H-abstraction. A second oxygen molecule can add to the QOOH, thereby forming a hydroperoxyalkylperoxy radical, O_2 QOOH. When this O_2 QOOH undergoes a similar internal H-abstraction reaction, TS₁ in Fig. 1, the incipient alpha-hydroperoxy structure is not stable and immediately dissociates to form a ketohydroperoxide

http://dx.doi.org/10.1016/j.proci.2014.05.006

1540-7489/© 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Please cite this article in press as: C.F. Goldsmith et al., Proc. Combust. Inst. (2014), http://dx.doi.org/ 10.1016/j.proci.2014.05.006

E-mail address: sjk@anl.gov (S.J. Klippenstein).

[†] Present Address: School of Engineering, Brown University, Providence, RI 02912, USA.

C.F. Goldsmith et al. | Proceedings of the Combustion Institute xxx (2014) xxx-xxx

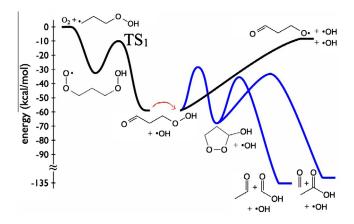


Fig. 1. Combined $C_3H_7O_4$ and $C_3H_6O_3$ (+OH) potential energy surfaces. The chain branching pathway is shown in black; the Korcek pathway is shown in blue. Direct dynamics simulations were initiated from TS₁. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

+ OH. The O–O bond in the ketohydroperoxide (OQ'OOH) is relatively weak – typically on the order of 40–45 kcal/mol – and thus the OQ'OOH dissociates to form a ketoalkyloxy radical + OH (OQ'O + OH). This final reaction is chain branching. For a review of low-temperature oxidation, see Ref. [1].

The OQ'OOH dissociation products are exothermic relative to the $O_2 + QOOH$ reactants. For the n-propyl oxidation system, the zero-point corrected electronic energy of $HOOCH_2CH_2CHO + OH$ channel is 61 kcal/mol below $O_2 + CH_2CH_2CH_2OOH$, and the energy for the corresponding $OCH_2CH_2CHO + 2OH$ products is 17 kcal/mol below the same reactants [2]. Although the preceding reactions were described sequentially, chemically activated reactions can skip some of the intermediate steps, $R + O_2 \rightarrow QOOH$, and $O_2 + QOOH \rightarrow$ e.g. OQ'OOH + OH. In fact, owing to the exothermicity of the final products, some of the $O_2 + QOOH$ may go directly to the three radicals in a single step: O $_2$ + QOOH \rightarrow OQ'O + 2OH.

Under typical conditions for low-temperature compression ignition engines (e.g. 700 K and 10 atm), several intermediates in the preceding reactions will reach a pseudo-steady state in which the net rate of destruction equals the net rate of formation [3,4]. First, the concentration of QOOH increases until the net rate for $O_2 + QOOH \rightarrow$ products equals the net rate for $RO_2 \rightarrow QOOH$; at the same time, the concentration of R builds up until the net rate for $R + O_2 \rightarrow products$ equals the net rate for $RH + OH \rightarrow R + H_2O$; next, the concentration of O₂QOOH increases until the net rate of $O_2QOOH \rightarrow OQ'OOH + OH$ equals the net rate of $O_2 + QOOH \rightarrow O_2QOOH$; lastly, the concentration of OQ'OOH builds up until its net rate of thermal decomposition equals the net rate of O₂QOOH dissociation. Once this final stage has

occurred, the sequence reaches a tipping point and becomes autocatalytic in radical production: the net result is two OH and one OQ'O formed for one OH consumed. Using a low-temperature propane oxidation mechanism [5], Merchant et al. developed a simple-yet-accurate analytic model for first-stage ignition from these pseudo-steady state assumptions [3]. This model highlights the centrality of OQ'OOH in the low-temperature chain branching sequence and indicates that thermal decomposition of OQ'OOH is even the rate-determining step in first-stage ignition under some conditions.

The mechanism utilized in Ref. [3] does not include other reactions for OQ'OOH destruction. If there were competing reactions that consumed OQ'OOH prior to its thermal decomposition to OQ'O + OH, then these reactions could have a profound impact on the time constant for the first-stage ignition. Recently Jalan et al. discovered such a reaction [6]. The same ketohydroperoxide resulting from the *n*-propyl system, HOOCH₂CH₂ CHO, can isomerize to form a cyclic peroxide, c-CH(OH)OOCH₂CH₂ (CP), which subsequently decomposes to a mixture of carboxylic acids and carbonyls, *e.g.* the blue lines in Fig. 1.

This pathway, originally hypothesized by Korcek, is important in liquid-phase hydrocarbon oxidation [6,7]. The barrier height for isomerization from OQ'OOH to CP is 15 kcal/mol below the dissociation limit for the competing OQ'O + OH chain branching pathway. Furthermore, the OQ'OOH \rightarrow CP isomerization reaction can be catalyzed by carboxylic acids, with a bimolecular barrier height of 1 kcal/mol [6], so once a critical concentration of acids is obtained, the isomerization reaction becomes autocatalytic. However, both the unimolecular and the acid-catalyzed isomerization reactions involve the coordinated shuttling of two hydrogen atoms, which requires double ring-like structures, and

Please cite this article in press as: C.F. Goldsmith et al., *Proc. Combust. Inst.* (2014), http://dx.doi.org/ 10.1016/j.proci.2014.05.006

Download English Version:

https://daneshyari.com/en/article/6679252

Download Persian Version:

https://daneshyari.com/article/6679252

Daneshyari.com