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Abstract

Butenes are intermediates ubiquitously formed by decomposition and oxidation of larger hydrocarbons
(e.g. alkanes) or alcohols present in conventional or reformulated fuels. This study provides new comple-
mentary data for the oxidation of trans-2-butene. The oxidation of trans-2-butene was studied for measur-
ing stable species concentration profiles during the oxidation of the fuel at atmospheric pressure, over a
range of equivalence ratios (0.5 6 u 6 2), and temperatures (900–1450 K). A combustion bomb apparatus
was used to determine laminar flame velocities of trans-2-butene in air at 1 atm, 300 K, and for equivalence
ratios of 0.8–1.4. The oxidation of trans-2-butene was simulated under these experimental conditions using
an extended detail chemical kinetic reaction mechanism (201 species involved in 1788 reactions). This
mechanism is based on a previously proposed scheme for the oxidation of hydrocarbons. Good agreement
with experimental data presented in this article was obtained which significantly improves kinetic modeling
ability. The structure of a trans-2-butene premixed low pressure flat flame recently published was also suc-
cessfully modeled. Sensitivity and reaction pathways analyses were performed to get insights into the pro-
cesses involved in the oxidation of trans-2-butene.
� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Alkenes are important intermediates formed
by combustion of larger hydrocarbons, e.g.,
alkanes and alcohols. With 4 carbon atoms,
butene is a good candidate for upgrading detailed

mechanisms of middle size species in combustion
reaction schemes. Butene is the shortest alkene
with isomers: a branched isomer, 2-methylpropene
(iso-butene), and three linear isomers, i.e.,
1-butene and the cis/trans 2-butene. The pyrolysis
and oxidation of iso-butene has been extensively
studied in the last decades in shock tubes [1–6],
turbulent flow reactor [7], JSR [8], and premixed
laminar flames [9]. Studies on 1-butene oxidation
have been conducted in JSR [10,11] and shock
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tube [11]. For both iso-butene and 1-butene, lam-
inar burning velocities have been measured [12].
Recently, the pyrolysis in a low-pressure flow
reactor [13] and the oxidation in low-pressure pre-
mixed flames [14] have been performed on butene
isomers.

The purpose of this work is to provide new
experimental data on trans-2-butene oxidation
using a JSR and a combustion bomb. The new
data set and low pressure flat flames data [14] were
used for validating the proposed kinetic reaction
mechanism.

2. Experimental

2.1. Jet stirred reactor

The reactor [15,16] is made of a 4 cm diameter
fused silica sphere (27.2 cm3) connected at 4 noz-
zles of 1 mm i.d. opposed in pair, allowing admis-
sion and mixing of reactants diluted with nitrogen
(<100 ppm H2O, <50 ppm O2, <1000 ppm Ar,
<5 ppm H2). A mixture of trans-2-butene
6.0027%mol and N2 93.9973%mol (Air Liquide)
was used. In the experiments, the fuel was highly
diluted before entering the reactor. Oxygen was
99.995% pure. A thermocouple (0.1 mm Pt–Pt/
Rh-10%, located inside a thin-wall silica tube)
was used for measuring the temperature inside
the reactor; it is movable along the JSR vertical
axis. During the experiments, a good thermal
homogeneity was obtained (gradients of ca. 1 K/cm).
A movable fused silica low pressure sonic probe
was used to sample reacting mixtures. The
samples were transferred to the analyzers through
a Teflon line heated at 200 �C. An online FTIR
(Nicolet 6700 – 2 m path length, 500 mbar and
resolution of 0.5 cm�1) was used to measure
CH2O, H2O, CO and CO2 concentrations. Off-line
analyses were also performed, after collection of
the samples and storage in 1L Pyrex bulbs, by
gas chromatographs (GC) equipped with capillary
columns (DB-624, CP-Al2O3-KCl, and Carbo-
plot-P7), a thermal conductivity detector (TCD),
and a flame ionization detector (FID). O2 and
H2 were quantified with a TCD whereas CH4,
C2H6, C2H4, C2H2, C3H6, C3H4-A, C3H4-P, trans-
and cis-2-C4H8, 1-C4H8, 1,3-C4H6, 1,2-C4H6,
1-C4H6, 2-C4H6, isoprene, C4H4, C4H2, 1,3-cyclo-
pentadiene, and C6H6 were quantified with a FID.
A GC-MS (Varian V1200) operating with electron
ionization (70 eV) was used for products identifi-
cation. Other products were found: i-C4H8,
2-methyl-2-butene, 2-methyl-1-butene, 3-methyl-
1-butene, t2-C5H10, c2-C5H10, 1,3-cyclopentadiene,
1,3-C5H8 and toluene. The larger products were
detected by GC/FID and GC/MS at trace concen-
trations. Toluene was the most abundant with a
maximum detected concentration of 3 ppm. This
is consistent with [14] ([toluene]/[benzene] = 0.1)

and with our modeling. The experiments were per-
formed at atmospheric pressure and the reactor
temperature was varied stepwise.

2.2. Laminar flame speed setup

The device used here [17] consists of a stainless
steel spherical combustion chamber with an inner
diameter of 200 mm for a total volume of 4.2 L.
The sphere is surrounded by a resistance wire
allowing heating up to 473 K. A vacuum pump
reduces the residual pressure inside the device
<0.003 mbar before gases injection. We used the
same fuel-nitrogen mixture as in Section 2.1.
Due to that nitrogen dilution, oxygen and nitro-
gen were added to get the oxygen/nitrogen ratio
in air (20.9%mol of O2/79.1%mol of N2) and
match the desired equivalence ratio. Quantities
of gases were introduced via thermal flow meters
(Brooks 5850S). A fan installed inside the cham-
ber ensured a perfectly homogeneous premixed
mixture. The fan was stopped 5 s before ignition
to avoid perturbations during the flame propaga-
tion. A piezo-electric pressure transducer and a
type-K thermocouple were used to check respec-
tively the pressure level and the initial temperature
before ignition. The maximum deviation between
the effective initial pressure inside the combustion
chamber and the required initial pressure was
about 1%. The initial temperature of the prepared
mixture was known at 2 K. Two tungsten elec-
trodes (diameter 1.5 mm), with a 1-mm gap,
linked to a conventional capacitive discharge igni-
tion system, were used for spark production at the
center of the chamber. Two opposite and trans-
parent windows (diameter 82 mm) provide optical
access into the chamber. A LED illuminator
(HardSoft DLR IL104G) equipped with an objec-
tive (HSO-PL-360) was used to provide continu-
ous and incoherent light with a wavelength of
528 nm. A parallel light was created using a pin-
hole (diameter 3 mm), placed at the focal point
of the objective, and a plano-convex lens (diame-
ter 70 mm, focal length 1000 mm). After passing
through the lens and the combustion chamber,
the beam is displayed on a screen. The visualiza-
tion of the flame was obtained using a classical
shadowgraph method. Instantaneous images were
recorded using a high-speed video camera (Pho-
tron Fastcam) operating at 6000 images per sec-
ond. The temporal evolution of the expanding
spherical flame was then analyzed. Measurements
were limited to flames with diameters <50 mm,
corresponding to a volume of burned gases less
than 1.6% of the chamber volume. Under such
conditions, the total chamber pressure can be con-
sidered constant during the initial stage of flame
expansion. The laminar burning velocity extrac-
tion follows the procedure used before [17].
The measured flame radius (Rf) against time (t)
determines the stretched spatial flame velocity:
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