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Abstract

A paradigm is described and demonstrated for rigorously evaluating model-versus-data agreement
while extracting new insights for improving the model and experiment. “Bound-to-Bound Data Collabo-
ration” (B2B-DC) is augmented with an Instrumental Model, integrating uncertainty quantification of the
reactor model, chemical model, and data analysis. The subject of analysis is a fuel-lean C2H2/O2/Ar
premixed laminar flat flame, mapped with VUV-photoionization molecular-beam mass spectrometry at
the Advanced Light Source of Lawrence Berkeley National Laboratory. Experimental signals were
modeled with a CHEMKIN flame code augmented with an Instrumental Model. Consistency of the model
and raw experimental data are determined as a quantitative measure of their agreement. Features of
the mole-fraction profiles are predicted for O, OH, C2H3, and background contributions to H2O
measurements. Also computed are posterior distributions of the initial targets and model parameters, as
well as their correlations. This approach to model-versus-data assessment promises to advance the science
and practical utility of modeling, establishing validity rigorously while identifying and ranking the impacts
of specific model and data uncertainties for model and data improvements.
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1. Introduction

Numerical modeling of combustion data has
become a valuable tool for technology and sci-
ence, yielding design and intellectual insights from
“proven” physical and chemical models. The ideal
proof is agreement of predictions with data from a
range of reactors and conditions, but there are
uncertainties in both the predictions and the data.
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The goal of developing uncertainty-quantified
(UQ) predictive models [1,2] has become broadly
accepted. In combustion chemistry, the UQ
emphasis has been accuracy of the kinetic-model
parameters (species thermochemistry, transport,
kinetics). Uncertainty in combustor data is usually
acknowledged, but mainly as a way of explaining
apparent deviations of the predictions. We rely
on data being accurate, if slightly imprecise.

Conventional testing of model agreement uses
processed experimental data, such as species
concentrations, which are obtained from raw data
like pulse counts, currents, and voltages. As a
result, in addition to raw-data aleatoric (statisti-
cal) uncertainty, analyzed data acquire epistemic
(systematic, nonstatistical) uncertainties intro-
duced via data-analysis assumptions and parame-
ters. Some data analyses may be very precise, like
spatial position from the turns of a precision-
screw drive, while others may be much more
uncertain, such as from factor-of-two calibration
factors.

The present work provides a richer, more rig-
orous paradigm. Rather than simply observing
model-data agreement or disagreement, it offers
mathematical proofs that no points exist outside
an interval where model and data are consistent,
as well as insights into the extent of agreement,
the sources of apparent disagreement, and specific
further research needed to improve the models
and the measurements. The key is to unify analy-
sis of uncertainties from the physico-chemical
combustion-experiment model and from the data
processing, itself a model.

Benefits of such a more-direct analysis, extend-
ing model predictions to the actual experimental
observables, have been noted in the past [3,4]. A
formal way of analysis can be accomplished
through an Instrumental Function [5], reversing
the raw-data analysis and thus transforming mod-
eled variables into directly measured quantities.
Incorporating uncertainties of the data-analysis
parameters broadens the concept to an Instru-
mental Model (IM), demonstrated in previous
work [6] connecting shock-tube species concentra-
tion (a derived property) with the photodiode
voltage (raw data) generated by laser light trans-
mitted across the shock tube. To examine and
demonstrate the benefits of the Instrumental-
Model approach, here we turn to a more complex
system, premixed laminar flat-flame data mapped
with molecular-beam mass spectrometry.

2. Outline of the analysis protocol

One of the distinguishing features of the anal-
ysis presented here is that flame modeling is fully
imbedded into the data analysis. In doing so, both
measurements and modeling are intertwined into
a single UQ analysis, and the extent of the agree-

ment or disagreement is evaluated through rigor-
ous UQ quantifiers rather than by comparison
between the numerically simulated and data-based
concentrations.

The general protocol of the approach is out-
lined first and applied and clarified in the subse-
quent sections and examples. A full model is
developed, including both a proposed reaction
mechanism (reactions, thermochemistry, kinetics,
transport properties) and the Instrumental Model.
From the flame measurements, particular fea-
tures, referred to as targets, are chosen. For each
experimental target, we identified model parame-
ters that most influence the target value, referred
to as active variables, and evaluated their respec-
tive ranges of uncertainties. Thus, another distin-
guishing feature of the analysis is that we do not
necessarily rely on the parameter values but rather
on realistically assessed parameter bounds.

Active variables in this protocol are from both
the reaction and Instrumental Models. In addi-
tion, the Instrumental Model employs state vari-
ables of the reaction model. Thus, the flame
model is integrated with processing of the experi-
mental data.

For each target, a surrogate model is built, an
algebraic representation of the relationship among
active variables and the modeled target value. The
purpose of surrogate models is to replace solving
the flame differential equations with faster-evalu-
ating functions. This approach speeds up function
evaluation of the UQ analysis, and in the present
case, it also allows use of more resourceful math-
ematical algorithms.

The composed data-model system is referred to
as a dataset. The first question to pose is whether
there exists at least one combination of active-var-
iable values, all within their respective uncertainty
bounds, such that the computed target values are
reproduced within their respective uncertainty
ranges. If such a point exists, the dataset is consis-
tent, otherwise, the dataset is inconsistent. If the
dataset is consistent, the entire collection of such
allowable points, referred to as the Feasible Set, is
examined to determine the range of variation of a
given target when the model parameters are con-
strained to the Feasible Set. Such predictions can
be made for active variables, dataset targets, as well
as for a priori unmeasured targets, referred to as
blind predictions. Further analysis is performed by
sampling the Feasible Set, which produces posterior
distributions for active variables and targets, along
with the correlations among them.

3. Experimental data

3.1. Flame

This study employs data from a near-stoichi-
ometric acetylene flat flame: equivalence ratio /
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