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Abstract

The transport fluxes and transport coefficients derived from the kinetic theory of polyatomic gas mix-
tures are discussed. The mathematical structure of transport linear systems and numerical algorithms for
fast evaluation of accurate transport coefficients are presented. The impact of thermal diffusion and volume
viscosity on flame structures and of thermodynamic nonidealities on cold mixing layers are investigated.
� 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Combustion models used to investigate pollu-
tant emission, soot formation, ignition phenom-
ena, strained or chemically controlled extinction
limits combine complex chemistry with detailed
transport phenomena [1–11]. The evaluation of
accurate transport coefficients is therefore an
important modeling and computational task. The
purpose of this paper is to review the expression
of transport fluxes, the mathematical structure of
transport linear systems, the fast evaluation of
accurate multicomponent transport coefficients
as well as the impact of thermal diffusion and vol-
ume viscosity on flame structures and of thermo-
dynamic nonidealities on cold mixing layers.

The expression of transport fluxes derived from
the kinetic theory of polyatomic gas mixtures is
first presented [12–22]. The transport fluxes are

notably expressed in terms of transport coefficients
and macroscopic variables gradients, generalizing
expressions previously derived empirically. The
transport coefficients for gas mixtures are still
not given explicitly by the kinetic theory of gases
but require solving transport linear systems. These
linear systems arise from Galerkin solution of sys-
tems of linearized Boltzmann equations obtained
with the Chapman–Enskog method.

The mathematical structure of the transport lin-
ear systems, that are typically singular constrained
positive semi-definite systems, is discussed [23].
Symmetry properties of the linear systems and the
transport coefficients are consequences of symme-
try properties associated with Boltzmann collision
operator [18–20]. The fast evaluation of accurate
transport coefficients using either conjugate gradi-
ent methods or stationary iterative algorithms is
addressed [24–30]. The relevant transport coeffi-
cients for flame calculations are reviewed and a
library of fortran routines freely distributed for
research purposes has been written [31].

For supercritical flames, the situation is far less
satisfactory since there is no general kinetic theory
of dense polyatomic fluid mixtures although some
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formal theories have been developed. The trans-
port fluxes may notably be obtained from statisti-
cal mechanics, statistical thermodynamics, or the
kinetic theory of dense mixtures of rigid spheres
[32–43]. We notably discuss the thermodynamic
nonidealities associated with multicomponent
transport fluxes.

The importance and/or influence of multicom-
ponent transport for computing flame structures
has been emphasized by many authors [44–50].
Numerical investigations have brought further
support for the importance of accurate transport
property in various multicomponent reactive
flows. The impact of Soret effect and multicompo-
nent diffusion coefficients on flame structures is
first investigated [51–73]. The influence of the vol-
ume viscosity coefficient—which is of the same
order than the shear viscosity for polyatomic
gases—is also discussed [74–85]. Finally, the
impact of nonidealities on mixing layers of cold
H2 and O2 at elevated pressure arising in super-
critical flames [86–98] is studied.

2. Transport linear systems

2.1. Kinetic theories

The fundamental equations governing flames
are derived from the kinetic theory of dilute poly-
atomic reactive gas mixtures [12–22]. The situation
of mixtures of monatomic gases and single poly-
atomic species was first investigated [13,14,18,19],
then generalized the situation of polyatomic gas
mixtures [16,17] as well as reactive mixtures of
polyatomic gases [7,21,22] and we refer to [7] for
a summary. The situation of multitemperature
flows or plasmas lay out of the scope of the present
article [22,30]. The governing equations, the ther-
modynamic properties, the chemical production
rates, the multicomponent transport fluxes, are
obtained as well as a definition of transport coeffi-
cients in terms of linear systems naturally arising
with the Chapman–Enskog expansion.

There are still differences in the structure of the
transport linear systems and transport coefficients
that may be obtained. Following Hirschfelder,
Curtiss, and Bird, various authors have considered
nonsymmetric coefficients as well as nonsymmetric
transport linear systems [13,17] hereby destroying
the natural symmetries associated with kinetic pro-
cesses [99]. We consider in this article symmetric
transport linear systems and diffusion coeffi-
cients—more interesting both theoretically and
numerically—that have been obtained by many
authors [14,16,99,18–20,7]. The symmetric diffu-
sion coefficients have been introduced by Wald-
mann [14] and used in particular by Chapman
and Cowling [18] and Ferziger and Kaper [19].
After the remarks of Van de Ree [99] symmetric
coefficients have also been used by Curtiss [100].

2.2. Transport fluxes

The transport fluxes appearing in the multi-
component flow governing equations are the vis-
cous tensor P, the heat flux Q, and the species
mass fluxes F k ¼ qkvk ; k 2 S, where vk ; k 2 S,
denote the species diffusion velocity, qk ; k 2 S,
the species mass densities, S ¼ f1; . . . ; ng the set
of species indices, and n the number of species.
These fluxes may be written in the form
[7,14,16,18–20]

P ¼ �j$ � vI � g $vþ $vt � 2

3
ð$ � vÞI

� �
; ð1Þ

vk ¼ �
X
l2S

Dkldl � hk$ log T ; k 2 S; ð2Þ

Q ¼ �bk$T � p
X
k2S

hkdk þ
X
k2S

hkF k ; ð3Þ

where v denotes the flow velocity, $ the space
derivative operator, j the volume viscosity, g the
shear viscosity, I the three dimensional identity
tensor, Dkl; k; l 2 S, the multicomponent diffusion
coefficients, dk ; k 2 S, the species diffusion driving
forces, hk ; k 2 S, the species thermal diffusion
coefficients, T the absolute temperature, bk the par-
tial thermal conductivity, p the pressure, hk ; k 2 S,
the species enthalpy per unit mass, and t the trans-
position operator. The first term in the expression
of the diffusion velocity vk yields diffusion effects
due to species driving forces while the second aris-
ing from temperature gradients corresponds to the
Soret—or Ludwig-Soret—effect. The first term in
the expression of the heat flux Q represents Fou-
rier’s law, the second corresponds to the Dufour
effect which is symmetric of the Soret effect, and
the third to the transfer of energy due to species
diffusion. Letting y ¼ ðy1; . . . ; ynÞ

t where yk is the
mass fraction of the kth species, h ¼ ðh1; . . . ; hnÞt;
D ¼ ðDklÞk;l2S , and h; i the scalar product, the dif-
fusion matrix D and the thermal diffusion coeffi-
cients h satisfy the mass conservation constraints
Dy ¼ 0 and hh; yi ¼ 0. The matrix of diffusion
coefficients D is symmetric, positive semi-definite
with nullspace Ry and the entropy production
due to diffusive processes reads ðp=T ÞhDd; di with
d ¼ ðd1; . . . ; dnÞt.

Assuming that gravity is the only force acting
on the mixture, the species diffusion driving force
dk ; k 2 S, may be written

dk ¼ $xk þ xk � ykð Þ$ log p; ð4Þ
where xk ; k 2 S, denote the species mole fractions.
One may equivalently use the unconstrained diffu-

sion driving forces bd k ¼ $pk=p where pk denotes
the partial pressure of the kth species, since

dk ¼ bd k � ykhu; bd i ¼ bd k � yk$ log p wherebd ¼ ðbd 1; . . . ; bd nÞ
t

and u ¼ ð1; . . . ; 1Þt.
The multicomponent transport fluxes may also

be written in terms of the species thermal diffusion
ratios vk ; k 2 S. The vector v ¼ ðv1; . . . ; vnÞ

t is
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