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ARTICLE INFO ABSTRACT
Article History: Carbon nanotube-based materials are gaining considerable attention as novel materials for renewable energy conver-
Received 13 July 2017 sion and storage. The novel optoelectronic properties of CNTs (e.g., exceptionally high surface area, thermal conductiv-
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‘ - ity, electron mobility, and mechanical strength) can be advantageous for applications toward energy conversion and
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storage. Although many nanomaterials are well known for the unique structure-property relations, such relations have
been sought most intensively from CNTs due to their extreme diversity and richness in structures. For the development
of energy-related devices (like photovoltaic cells, supercapacitors, and lithium ion batteries), it is critical to conduct
pre-evaluation of their design, operation, and performance in terms of cost, life time, performance, and environmental
impact. This critical review was organized to address the recent developments in the use of CNT-based materials as
working/counter electrodes and electrolytes in photovoltaic devices and as building blocks in next-generation flexible
energy storage devices. The most promising research in the applications of CNTs toward energy conversion and storage
is highlighted based on both computational and experimental studies along with the challenges for developing break-

through products.
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1. Introduction

The exponentially increasing demand for renewable energy,
accompanied by the rise of high-speed, portable, wearable, and
transparent electronic devices, has sped up the development of new
techniques not only to catch up such unprecedented challenges but
also to produce new device architectures. A promising solution for
such challenges lies in nanotechnology of which advent can help
stimulate the invention and fabrication of many advanced materials
with innovative performance. The material structure can be tunable
by nanotechnology which endowed nanomaterials with highly
unique and novel properties and new opportunities in various fields
of applications (e.g., energy conversion and storage, water treat-
ment, contaminant sensing, and molecular biology).

Nanomaterials have been widely investigated as electrodes and
electrolytes in energy conversion and storage applications due to
their many advantageous properties. In particular, carbon-based
nanomaterials (e.g., 2D graphene sheets, 1D carbon nanotubes, and
0D fullerenes) have drawn particular attention due to their proper-
ties, which are derived from their atomic structure and surface
chemistry. Among the wide variety of nanomaterials, carbon nano-
tubes (CNTs) possess one of the unique nanostructures due to their
fine chemical composition and atomic-bonding configuration. Addi-
tionally, CNTs possess strong structure-property relations based on
highly diverse structures [1]. The electro-mechanical properties of
CNTs have been investigated intensively since their finding in early
1990s. Although early research centered on their growth and charac-
terization, the focus shifted toward diverse commercial fields
ranging from photovoltaic (PV) to sensing applications (e.g., by inte-
grating them into thin-film electronics) [2—8]. As we will demon-
strate in this review, there have been growing interests in using
CNTs in a range of applications.

Because of their many fascinating properties (e.g., good mechani-
cal strength and elasticity, high electronic sensitivity to mechanical
strain and chemical absorbates, good electronic properties ranging
from semiconductor to metals, and very large surface area-to-vol-
ume ratio), the use of CNTs has been recommended for diverse appli-
cations such as components of PV devices, energy storage devices,
chemical sensors, actuators, and metrology-probe tips [9—12]. In
this review, we focused on the role of CNT-based materials in energy
conversion and storage. Existing studies directed to both theoretical
and computational aspects of CNTs are all discussed. We also
detailed the challenges associated with their practical application
toward commercialization.

2. Carbon nanotubes: concepts and properties

CNTs with their unique morphologies and novel physicochemical
properties, represent promising materials for future applications.
They are one-dimensional allotropes of carbon where hexagonally-
oriented carbon atoms have a cylindrical nanostructure. Carbon-
based nanomaterials are classified depending on their atomic bond-
ing (sp, sp?, and sp® hybridizations) and dimensionality [13]. Glob-
ally, the commercial interest in CNTs has been reflected in their
production capacity which is estimated to exceed several thousand
tons per year while growing continuously [14]. The CNT mass pro-
duction is a multi-level process that includes molecules, material,
reactor, process, and system level engineering, as shown in Fig. 1
[15]. The molecular level engineering is based on the formation of
CNTs via chemical route. It concerns on the tunable structure of
CNTs, e.g., crystallinity, wall number, defect, length, and chirality
with the help of such variables as proper growth windows, use of
proper catalysts, and carbon sources. The production cost of CNTs
can be estimated easily with the help of selected chemical route and
operating window. The material-level engineering emphasizes the
strong interactions among CNTs that can lead to several types of
agglomerates including aligned CNTs, entangled CNTs, and sparse
CNTs. It requires a better knowledge of CNTs with respect to their
structure, position, alignment, and quality control. Further, the
third-level engineering is related to the domain of CNTs production
with consideration of their hydrodynamics, apparent/intrinsic kinet-
ics, heat/mass transfer kinetics, and catalyst deactivation. The forth-
level process engineering relies on the construction of facilities
required for continuous and mass production of CNTs, e.g., purifica-
tion, automation, packaging, and delivery. There are several factors
that can help in improving the efficiency of the system such as: (i)
molecular scale intensification, (ii) saving of feedstock, and (iii)
multi-functionality of the reactor. The last level of the CNT mass pro-
duction is related to environmental as well as ecological considera-
tions about their production and commercial applications. It should
thus consider the effect of CNTs exposure on human health and bio-
sphere.

Further, several synthesis strategies for CNTs have been devel-
oped, e.g., arc discharge [16], chemical vapor deposition (CVD) [17],
laser ablation [18], electrolysis [19], pyrolysis [20], flame synthesis
[21], electron or ion beam irradiation [22], and solar approaches
[23]. The laser ablation and arc discharge of graphite are common
techniques for production of CNTs from carbon vapor. These CNTs
can maintain good quality with a fewer structural defects due to the
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