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A B S T R A C T

Increasing sustainability requirements make evaluating different design options for identifying energy-efficient
design ever more important. These requirements demand simulation models that are not only accurate but also
fast. Machine Learning (ML) enables effective mimicry of Building Performance Simulation (BPS) while gen-
erating results much faster than BPS. Component-Based Machine Learning (CBML) enhances the capabilities of
the monolithic ML model. Extending monolithic ML approach, the paper presents deep-learning architectures,
component development methods and evaluates their suitability for space exploration in building design. Results
indicate that deep learning increases the performance of models over simple artificial neural network models.
Methods such as transfer learning and Multi-Task Learning make the component development process more
efficient. Testing the deep-learning model on 201 new design cases indicates that its cooling energy prediction
(R2: 0.983) is similar to BPS, while errors for heating energy predictions (R2: 0.848) are higher than BPS. Higher
heating energy prediction error can be resolved by collecting heating data using better design space sampling
methods that cover the heating demand distribution effectively. Given that the accuracy of the deep-learning
model for heating predictions can be increased, the major advantage of deep-learning models over BPS is their
high computation speed. BPS required 1145 s to simulate 201 design cases. Using the deep-learning model,
similar results can be obtained in 0.9 s. High computation speed makes deep-learning models suitable for design
space exploration.

1. Introduction

Building design is exploratory in nature, whereby architects rely on
experiential knowledge [1]. Stringent energy-efficiency requirements
call for high-performance building design and operation. Building
Performance Simulation (BPS) helps develop buildings that adhere to
these demands. Results of BPS are used by designers (architects and
engineers) to take appropriate decisions.

The utilisation and generation of BPS results have posed challenges
in integrating BPS in the design process. The first challenge is that
designers may lack fundamental knowledge of physical phenomena in
BPS, making it challenging for them to understand simulation results
and take appropriate design decisions [1,2]. Designers also perceive
simulations as theoretical. Lack of knowledge and perception tend to
make them rely more on rules of thumb and experiential knowledge for
decisions if simulations do not provide instantaneous results. None-
theless, designers are interested in using simulations to improve their
designs [1] and their awareness of the design space through simulations
allows them to take appropriate design decisions. Simulating multiple

design options using BPS can be time consuming. Therefore, it is critical
to obtain rapid simulation results in order to avoid the use of conven-
tional knowledge, which may not always be valid, and to explore the
entire design space.

The second challenge is that the quality of BPS results depends on
the simplification methods applied in the model [3], on the quality of
tools and on the skill level of the simulation analyst [4]. The availability
of time to perform simulations varies at different design stages. Simu-
lation time affects the complexity of the model used. Developing
complex models requires a great deal of time as well as information.
Therefore, simple models are used in early design stages and more
detailed models as the design stage progresses. Upon design comple-
tion, a detailed model is used to validate whether the design complies
with energy efficiency requirements. It is therefore important that the
simple models are good representations of the detailed model. The
ability to simplify a model accurately depends on the technical skills of
the analyst. The skill level determines the simplification methods uti-
lised by the analyst to obtain simple BPS. Simplification methods can
range from use of building mass to represent building geometry to

https://doi.org/10.1016/j.aei.2018.06.004
Received 10 November 2017; Received in revised form 16 May 2018; Accepted 11 June 2018

⁎ Corresponding author.
E-mail address: sundar.singaravel@kuleuven.be (S. Singaravel).

Advanced Engineering Informatics 38 (2018) 81–90

1474-0346/ © 2018 Published by Elsevier Ltd.

T

http://www.sciencedirect.com/science/journal/14740346
https://www.elsevier.com/locate/aei
https://doi.org/10.1016/j.aei.2018.06.004
https://doi.org/10.1016/j.aei.2018.06.004
mailto:sundar.singaravel@kuleuven.be
https://doi.org/10.1016/j.aei.2018.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2018.06.004&domain=pdf


seasonal efficiencies for representing Heating Ventilation and Air-
Conditioning (HVAC) system. The continuum between simple and de-
tailed models (i.e. simplification method utilised) can induce prediction
gap (see Fig. 1) [3]. Prediction gap is the difference between predictions
of simple BPS model and detailed BPS model. Definition of prediction
gap is comparable to “inter-model variability” defined by Dronkelaar
et al. (2016) [5]. High prediction gap compromises the reliability of the
decision taken using simple BPS. Wrong decision with simple BPS could
result in expensive design changes. Hence, it is important to have
models with low- or no prediction gap to ensure the reliability of a
design decision.

Furthermore, assumptions (e.g. about occupancy) made in a de-
tailed simulation model are based on the simulation analyst’s percep-
tions of the building [1]. When these perceptions are incorrect, per-
formance gaps are observed [6,7]. The performance gap is defined as
the difference between actual energy consumption and design stage
energy prediction [6,7]. The key difference between a prediction and a
performance gap is that a prediction gap can be reduced by means of
correct simplifications, while a performance gap is difficult to reduce
during the design stage as it results from uninformed assumptions.
Prediction and performance gaps also influence the credibility of BPS,
which, in turn, influences designers’ perceptions of BPS and its benefits
for the design process. Therefore, it is crucial that these gaps be re-
duced.

The above challenges result in unexplored low-energy design solu-
tions. To limit designers’ reliance on conventional methods and change
designers’ perspective on simulations, analysts must provide reliable
and rapid results. Hence, prediction accuracy and computational time1

to perform simulations play vital roles. Machine Learning (ML) provides
the capability of extracting knowledge from data by recognising pat-
terns within them [8]. ML models enable us to capture interactions
observed within detailed BPS by means of simple input structures [9]. Is
it possible to develop ML models that might complement BPS to over-
come these challenges? This paper aims to provide and evaluate deep-
learning (a sub-domain of ML) methods that enable the skilled analyst
to develop reliable and rapid models for design decisions. To make a
case for complementary models (meta/surrogate models) for a BPS
model, we start the discussion with basic questions such as ‘what is the
purpose of a model?’ and ‘how do ML models fit the grand scheme of
sustainable building design?’ The discussion is followed by an evalua-
tion of deep-learning methods to highlight their potential for com-
plementing BPS in building design.

2. Background

A model providing the necessary information for design decisions is
considered a good model [2]. Generating all of the required information
using BPS is possible. Within the constraints of a design program,

however, the effort required to obtain necessary information may not
be feasible. To address the above challenge, models that emulate and
substitute detailed physical simulations are used. In engineering, these
models are also referred to as meta-models or surrogate models. ML is
an effective way to develop meta/surrogate models. Artificial Neural
Network (ANN) is one such model so in this context ML model is sy-
nonymous with meta/surrogate model. Meta-models typically have low
computation time compared to BPS [10]. Low computation time with
sufficient accuracy is ideal for situations where rapid performance
feedback is required and also enable the introduction of advanced de-
sign optimisation techniques [11,12].

ANN and Support Vector Machines (SVM) are some of the popular
ML algorithms used to predict the energy performance of a building
[12–20]. Other potential algorithms applied in the context of building
energy prediction are decision tree, random forest and multivariate
adaptive regression splines [21–23]. These algorithms are applied for
rapid design decision energy predictions, for design optimisation based
on energy predictions and for operational energy predictions. In all of
these applications, ML models provide one response or output and no
extra information to support this response. Hence, analysts have to rely
on their knowledge to derive possible reasons to support the response in
order to make appropriate design recommendations. The authors have
proposed the use of a component-based approach to overcome this
limitation (i.e. lack of supporting information). The next section con-
tains a brief description of the approach.

Deep learning has outperformed other ML algorithms in domains
such as image classification. However, the application of deep-learning
algorithms for building energy predictions is limited [24], because the
benefits of deep learning are observed in very large datasets, while its
performance on smaller datasets is similar to other ML methods. One
application of deep learning found in the literature is for short-term
cooling energy predictions [25]. Cheng Fan et al. (2017) state that for
the developed case and dataset, deep learning did not provide many
advantages over traditional methods. However, the features extracted
(or representations learned) using deep auto-encoders resulted in sig-
nificant improvements in prediction performance [25]. Initial research
indicated that simple ANN could provide predictions with accuracy
similar to deep-learning models [26]. However, initial research only
evaluated simple datasets. Data covering broader design parameters
can induce more non-linearity and require larger datasets to effectively
cover the design space. This paper expands the dataset to evaluate
deep-learning architectures and development methods. Finally, im-
plementing models using deep-learning architectures can result in a
model size of polynomial nature, while the same representation using a
shallow model results in an exponentially sized model [27].

3. Deep learning for the component-based approach

3.1. What is and why use a component-based approach?

ML models are confined to the development dataset’s distribution.

Fig. 1. Illustration of gaps.

1 Including development and simulation time.
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