
Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

Short-term electricity demand forecasting with MARS, SVR and ARIMA
models using aggregated demand data in Queensland, Australia

Mohanad S. Al-Musaylha,b,⁎, Ravinesh C. Deoa,d,⁎, Jan F. Adamowskic, Yan Lia

a School of Agricultural, Computational and Environmental Sciences, Institute of Agriculture and Environment (IAg&E), University of Southern Queensland, QLD 4350,
Australia
bManagement Technical College, Southern Technical University, Basrah, Iraq
c Department of Bioresource Engineering, Faculty of Agricultural and Environmental Science, McGill University, Québec H9X 3V9, Canada
d Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

A R T I C L E I N F O

Keywords:
Electricity demand forecasting
Machine learning
SVR
MARS
ARIMA

A B S T R A C T

Accurate and reliable forecasting models for electricity demand (G) are critical in engineering applications. They
assist renewable and conventional energy engineers, electricity providers, end-users, and government entities in
addressing energy sustainability challenges for the National Electricity Market (NEM) in Australia, including the
expansion of distribution networks, energy pricing, and policy development. In this study, data-driven techni-
ques for forecasting short-term (24-h) G-data are adopted using 0.5 h, 1.0 h, and 24 h forecasting horizons. These
techniques are based on the Multivariate Adaptive Regression Spline (MARS), Support Vector Regression (SVR),
and Autoregressive Integrated Moving Average (ARIMA) models. This study is focused in Queensland, Australia’s
second largest state, where end-user demand for energy continues to increase. To determine the MARS and SVR
model inputs, the partial autocorrelation function is applied to historical (area aggregated) G data in the training
period to discriminate the significant (lagged) inputs. On the other hand, single input G data is used to develop
the univariate ARIMA model. The predictors are based on statistically significant lagged inputs and partitioned
into training (80%) and testing (20%) subsets to construct the forecasting models. The accuracy of the G fore-
casts, with respect to the measured G data, is assessed using statistical metrics such as the Pearson Product-
Moment Correlation coefficient (r), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE).
Normalized model assessment metrics based on RMSE and MAE relative to observed means (RMSE MAEandG G ),
Willmott’s Index (WI), Legates and McCabe Index E( )LM , and Nash–Sutcliffe coefficients E( NS) are also utilised to
assess the models’ preciseness. For the 0.5 h and 1.0 h short-term forecasting horizons, the MARS model out-
performs the SVR and ARIMA models displaying the largest WI (0.993 and 0.990) and lowest MAE (45.363 and
86.502MW), respectively. In contrast, the SVR model is superior to the MARS and ARIMA models for the daily
(24 h) forecasting horizon demonstrating a greater WI (0.890) and MAE (162.363MW). Therefore, the MARS
and SVR models can be considered more suitable for short-term G forecasting in Queensland, Australia, when
compared to the ARIMA model. Accordingly, they are useful scientific tools for further exploration of real-time
electricity demand data forecasting.
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1. Introduction

Electricity load forecasting (also referred to as demand and abbre-
viated as G in this paper, MW) plays an important role in the design of
power distribution systems [1,2]. Forecast models are essential for the
operation of energy utilities as they influence load switching and power
grid management decisions in response to changes in consumers’ needs
[3]. G forecasts are also valuable for institutions related to the fields of
energy generation, transmission, and marketing. The precision of G es-
timates is critical since a 1% rise in load forecasting error can lead to a
loss of millions of dollars [4–6]. Over- or under-projections of G can
endanger the development of coherent energy policies and hinder the
sustainable operation of a healthy energy market [7]. Furthermore, de-
mographic, climatic, social, recreational, and seasonal factors can impact
the accuracy of G estimates [1,8,9]. Therefore, robust forecasting models
that can address engineering challenges, such as minimizing predictive
inaccuracy in G data forecasting, are needed to, for example, support the
sustainable operation of the National Electricity Market (NEM).

Qualitative and quantitative decision-support tools have been useful
in G forecasting. Qualitative techniques, including the Delphi curve
fitting method and other technological comparisons [6,10,11], accu-
mulate experience in terms of real energy usage to achieve a consensus
from different disciplines regarding future demand. On the other hand,
quantitative energy forecasting is often applied through physics-based
and data-driven (or black box) models that draw upon the inputs re-
lated to the antecedent changes in G data. The models’ significant
computational power has led to a rise in their adoption [12]. Data-
driven models, in particular, have the ability to accurately forecast G,
which is considered a challenging task [6]. Having achieved a sig-
nificant level of accuracy, data-driven models have been widely
adopted in energy demand forecasting (e.g., [13,14]). Autoregressive
Integrated Moving Average (ARIMA) [15], Artificial Neural Network
(ANN) [16], Support Vector Regression (SVR) [17], genetic algorithms,
fuzzy logic, knowledge-based expert systems [18], and Multivariate
Adaptive Regression Splines (MARS) [19] are among the popular
forecasting tools used by energy researchers.

The SVR model, utilised as a primary model in this study, is governed
by regularization networks for feature extraction. The SVR model does
not require iterative tuning of model parameters [20,21]. Its algorithm is
based on the structural risk minimization (SRM) principle and aims to
reduce overfitting data by minimizing the expected error of a learning
machine [21]. In the last decades, this technique has been recognized
and applied throughout engineering, including in forecasting (or re-
gression analysis), decision-making (or classification works) processes
and real-life engineering problems [22]. Additionally, the SVR models
have been shown to be powerful tools when a time-series (e.g., G) needs
to be forecasted using a matrix of multiple predictors. As a result, their
applications have continued to grow in the energy forecasting field. For
example, in Turkey (Istanbul), several investigators have used the SVR
model with a radial Basis Kernel Function (RBF) to forecast G data [23].
In eastern Saudi Arabia, the SVR model generated more accurate hourly
G forecasts than a baseline autoregressive (AR) model [24]. In addition,
different SVR models were applied by Sivapragasam and Liong [25] in
Taiwan to forecast daily loads in high, medium, and low regions. In their
study, the SVR model provided better predictive performance than an
ANN approach for forecasting regional electric loads [29]. Except for one
study that confirmed SVR models’ ability to forecast global solar radia-
tion [17], to the best of the authors’ knowledge, a robust SVR forecasting
model has been limitedly applied for energy demand. Thus, additional
studies are needed to explore SVR modelling in comparison to other
models applied in G forecasting.

Contrary to the SVR model, the MARS model has not been widely
tested for G forecasting. It is designed to adopt piecewise (linear or cubic)
basis functions [26,27]. In general, the model is a fast and flexible sta-
tistical tool that operates through an integrated linear and non-linear
modelling approach [28]. More importantly, it has the capability of

employing a set of basic functions using several predictor variables to
assess their relationship with the objective variable through non-linear
and multi-collinear analysis. This is important for demand forecasting
based on interactions between different variables and the demand data.
Although the literature on MARS models applied in the field of G fore-
casting is very scarce, this model has proven to be highly accurate in
several estimation engineering challenges. Examples may be drawn from
studies that discuss doweled pavement performance modelling, determi-
nation of ultimate capacity of driven piles in cohesionless soil, and ana-
lysis of geotechnical engineering systems [29–31]. In Ontario (Canada),
the MARS model was applied, through a semiparametric approach, for
forecasting short-term oil prices [32] and investigating the behaviour of
short-term (hourly) energy price (HOEP) data through lagged input
combinations [8]. Sigauke and Chikobvu [19] tested the MARS model for
G forecasting in South Africa; this demonstrated its capability of yielding
a significantly lower Root Mean Square Error (RMSE) when compared to
piecewise regression-based models. However, despite its growing global
applicability (e.g., [26,27,33–35]), the MARS model remains to be ex-
plored for G forecasting in the present study region.

In the literature, the ARIMA model has generated satisfactory results
for engineering challenges including the forecasting of electricity load
data [15], oil [32], and gas demand [36]. A study in Turkey applied a co-
integration method with an ARIMA model for G-estimation and com-
pared results with official projections. It concluded that approximately
34% of the load was overestimated when compared to measured data
from the ARIMA model [8]. Several studies have indicated that the
ARIMA model tends to generate large errors for long-range forecasting
horizons. For example, a comparison of the ARIMA model, the hybrid
Grey Model (GM-ARIMA), and the Grey Model (GM(1, 1)) for forecasting
G in China showed that GM (1, 1) outperformed the ARIMA model [37].
Similarly, a univariate ARAR model (i.e., a modified version of the
ARIMA model) outperformed a classical ARIMA model in Malaysia [38].
However, to the best of the authors’ knowledge, a comparison of the
MARS, SVR, and ARIMA methods, each having their own merits and
weaknesses, has not been undertaken in the field of G forecasting.

To explore opportunities in G forecasting, this paper discusses the
versatility of data-driven techniques (multivariate MARS and SVR
models and the univariate ARIMA model) for short-term half-hourly
(0.5 h), hourly (1.0 h) and daily (24 h) horizon data. The study is ben-
eficial to the field of power systems engineering and management since
energy usage in Queensland continues to face significant challenges,
particularly as it represents a large fraction (i.e., 23%) of the national
2012–2013 averaged energy demand [39]. The objectives of the study
are as follows: (1) To develop and optimise the MARS, SVR, and ARIMA
models for G forecasting using lagged combinations of the state-ag-
gregated G data as the predictor variable; (2) To validate the optimal
MARS, SVR, and ARIMA models for their ability to generate G forecasts
at multiple forecasting horizons (i.e., 0.5, 1.0 and 24 h); and (3) To
evaluate the models’ preciseness over a recent period, [01-01-2012 to
31-12-2015 (dd-mm-yyyy)], by employing robust statistical metrics
comparing forecasted and observed G data obtained from the Australian
Energy Market Operator (AEMO) [40]. To evaluate and reach these
objectives, this paper is divided into the following sections: Section 2
describes the theory of SVR, MARS, and ARIMA models; Section 3
presents the materials and methods including the G data and model
development and evaluation; Section 4 presents the results and dis-
cussion; and Section 5 further discusses the results, research opportu-
nities, and limitations. The final section summarizes the research
findings and key considerations for future work.

2. Theoretical background

2.1. Support Vector regression

An SVR model can provide solutions to regression problems with
multiple predictors = =

=X x{ }i i
i n

1 , where n is the number of predictor
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