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H I G H L I G H T S

• Capacity credit (CC) of demand response (DR) under the smart-grid is assessed.

• Proposed a hybrid probabilistic-possibilistic framework for DR modeling.

• Both exogenous and endogenous uncertainties associated with DR are considered.

• A reliability-based algorithm combining operation optimization is developed.

• The impacts of various factors on DR CC are analyzed through numerical studies.
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A B S T R A C T

As a featured smart-grid technology, demand response (DR) provides utility companies with unprecedented
flexibility to improve the reliability of electricity service in future power systems. However, due to the un-
certainties arising from the demand side, the extent to which DR can be utilized for capacity support poses a
major question to the utilities. To address this issue, this paper proposes a new methodological framework to
assess the potential reliability value of DR in smart grids. The framework is established on the concept of ca-
pacity credit (CC), and it accommodates different types of uncertainties (i.e., probabilistic and possibilistic)
accrued from physical and anthropogenic factors in DR programs. The capability of DR during operation is
considered as a synthesized result of multiple facets, i.e., users’ load characteristics, participation levels, and load
recoveries, and different models are developed to represent each component. To characterize the stochastic
nature of demand responsiveness, the fuzzy theory is introduced, and possibilistic models are proposed to de-
scribe the human-related uncertainties under incomplete information. In addition, considering that in reality, DR
operation could affect the comfort of customers, the dynamics of demand-side participation have also been
incorporated in our study, in which two utility-based indices are defined to quantify the effect of such inter-
dependency. Using a probabilistic propagation technique, the different types of uncertainties involved can be
normalized and systematically addressed under the same framework. Then, the relevant models can be applied
to the CC evaluation procedures, wherein two dispatching schemes (i.e., reliability-driven and coordinated
management) are considered to study the effect of DR operation on its CC. The proposed methodology is tested
on a modified RTS system, and the obtained results confirm its effectiveness.
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1. Introduction

As an advanced smart-grid technology, demand response (DR)
provides utility companies (UCs) with an efficient means to manage
power system operation by exploiting the demand-side flexibilities via
economic or financial mechanisms [1]. Unlike traditional supply-side
resources, the implementation of DR does not rely heavily on physical
devices; thus, its extensive deployment is expected to yield significant
benefits to different stakeholders in the electricity market.

For customers, participating in DR programs not only can help re-
duce their electricity bill but also may yield additional rewards [2]. For
the regulator, DR can temper price spikes and mitigate the risk of
market power abuses [3]. In addition, as DR reshapes the load profile of
customers, the grid operator can also use DR as a tool to address net-
work congestion [4] and to enhance the utilization of renewable energy
sources [5,6], such as wind or solar, in future smart-grid (SG) systems.

Although the potential benefits of DR have been proven notable, one
of its most relevant aspects for UCs lies in its contribution to the re-
liability of supply. In a competitive market, regulators normally impose
mandatory limits on the frequency and duration of customer interrup-
tions; thus, UCs are under great pressure to maintain and improve the
reliability of their services, as failing to deliver the required targets can
lead to severe penalties [7]. However, as a remedial scheme, DR can
reduce the load demand and provide capacity supports to the grid in
times of emergency. This would help enhance the load-carrying cap-
ability of the system and thus enable UCs to meet reliability commit-
ments without incurring additional capacity expansion [8].

In recognition of the significant role that DR could play, a number of
pioneering studies have been conducted on this issue in recent times. By
using the sequential Monte Carlo simulation (SMCS) technique, the
impact of DR on the adequacy of distribution systems is examined in
[9]. In [10], Syrri et al. present a comprehensive techno-economic as-
sessment approach to quantify the capability of post-fault DR to provide
release for generation capacity. An optimal power flow (OPF) approach
was used for the selective disconnection of DR customers according to a
priority list, which reflects the reliability value of power interruptions.
In practice, as a decrease in energy usage could be detrimental to users’
wellbeing, to compensate for such losses, customers tend to restore
their load demand after DR events. This load recovery (LR) effect was
also examined in [11]. Additionally, a systematic evaluation framework
for the capacity credit (CC) of DR was proposed in [12]. Ref. [13] also
presents a sequential state-enumeration-based method that is suitable
for system reliability evaluation with DR. For most DR analysis, the
reaction of responsive loads to imposed schemes is typically re-
presented using a linear model. However, in reality, due to potential
economic and social reasons, the behaviors of responsive users might
differ and may not follow a linear pattern consistently during operation.
To address this issue, Rahmani-andebili presents a novel nonlinear
model for DR programs and implements the method on several real
power markets [14]. Based on the work of [14], the author further
introduces the model into the unit commitment study [15] and con-
cludes that impractical modeling of the DR behavior may result in
significant errors in the final decision. In addition, a new representation
for DR programs that includes the effects of both incentive and penalty
on the load demand is also developed in [16]. By using the proposed
model, the system operator may evaluate the behaviors of customers
more precisely and therefore identify the best DR strategy under dif-
ferent market settings.

In all the above literature [9–16], the demand responsivity of cus-
tomers (i.e., responsive load behavior) is assumed to be a constant,
which can be known or perfectly forecasted by the UC in advance.
However, in real-world situations, as users may have different con-
sumption patterns and preferences, it is not easy for UCs to learn the
idiosyncrasies of each DR customer. Moreover, even if such information
is attainable, the responsivity of individuals can also be affected by
various other factors, e.g., special events, the effects of which are

difficult to quantify through a deterministic model. For this reason, the
actual DR capacity of the system should be highly uncertain to the UCs
during operation. However, such uncertainty issues regarding DR were
barely considered in the works of [9–16].

To fill this gap, a new algorithm for the short-term reliability eva-
luation of DR-integrated power systems was proposed in [17], explicitly
accounting for the impacts of DR variability. The uncertainties of DR
have also been discussed in [18]. In this research, the responsiveness of
consumers to the electricity prices was modeled by a stochastic price-
elastic demand curve, which can vary within a certain range to capture
the potential effects of DR failures on the system. Additionally, the
authors of [2] proposed a real-time price-based DR management for
residential appliances, wherein the dynamics in electricity prices were
considered and represented by using a Gaussian distribution. The
parameters for the model are determined according to the real price
data collected from the market. Furthermore, a long-term probabilistic
framework for analyzing the reliability contribution of DR was also
presented in [19], and multiple interactions among the generators and
price-responsive demand were considered. In addition, similar studies
with respect to different types of DR programs considering uncertainties
can be found in [20], [21] and [22].

For all the studies presented above [17–22], the uncertainties of DR
were mostly modeled as a fixed probability distribution that can be
fully determined before the assessment. In other words, existing re-
searches regard the demand responsivity of users as an exogenous un-
certain variable, which is independent of the control strategy adopted
by the operator. [In economics, exogenous uncertainties are generally
referred to as the inputs whose variation can be determined outside the
system boundary and are independent of the external control, as they
arise from the marketplace itself. In practice, if an uncertain variable
follows a specific statistical regularity, which might be known in ad-
vance, and does not change with time, we can refer to this case as
exogenous uncertainty; otherwise, we will talk about endogenous un-
certainty.] However, in actual conditions, the participation of DR can
provide customers with financial rewards but may also decrease their
wellbeing (comfort) [23]. Improper scheduling tactics would poten-
tially lead to fatigue of users and reduction of their compliance level to
DR calls1 [24]. As such, the actual distribution of the users’ responsivity
not only depends on its future outcomes but also is affected by the
operation decisions of the grid. Thus, failing to incorporate such a de-
pendent and dynamic nature of DR is likely to cause a misestimation for
its reliability benefits. However, the existing works [17–22] did not
fully consider this issue (endogenous uncertainties of DR).

To fill this gap, in this study, a novel probabilistic-possibilistic fra-
mework for the CC estimation of DR from the perspective of UCs is
proposed. Unlike the existing works, the stochastic feature of DR and its
correlation with the operation decisions is explicitly considered in our
analysis. For this purpose, we first divide the influential factors of DR
into several aspects, and different models are proposed to represent
each component. To quantify the disutility of users due to DR, two
evaluation indices (frequency-based and intensity-based) are defined;
these indices are formulated as a function of DR operation decisions.
Additionally, considering the ambiguity of individual idiosyncrasies, a
fuzzy approach is employed to model the DR uncertainties under in-
complete information. Using a probabilistic propagation technique, the
different types of (probabilistic and possibilistic) uncertainties con-
cerned in the study can be normalized under the same framework. To
demonstrate the practicality of the proposed model, we exemplify its
usage in DR’s CC estimation, which is implemented from the perspec-
tive of the UC.

The structure of this paper is organized as follows. Section 2 in-
troduces the metrics used for quantifying the DR CC. Section 3 describes

1 This can be especially true in DR programs if no penalties are imposed for
the violation of DR calls.
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