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H I G H L I G H T S

• Integrated volt-var optimization engine is proposed for distributed grid control.

• The proposed method reduces up to 92% computational time.

• The benefits and charging demands of electric vehicle owners can be guaranteed.

• Costly diesel generator usage can be reduced by adopting more vehicle-to-grid var.

• The computation time of optimization decreases even when more energy sources added.
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A B S T R A C T

Electric Vehicles have been receiving increasing attention. As the number of electric vehicles increases, un-
coordinated charging of electric vehicles can lead to voltage and frequency instability in microgrids. Various
methods have been proposed for electrical vehicle coordination, where most of them focused on controlling
active power. Vehicle-to-grid var has been recently included in volt-var optimization approaches, which aim at
improving voltage stability using var sources. However, most of these approaches are based on computationally
inefficient heuristic methods, which are not applicable to handle fast-changing vehicle-to-grid var. Furthermore,
the uncertainties and charging demands of electric vehicles have not been considered thoroughly. In this paper,
an integrated volt-var optimization engine is proposed for distributed electric vehicle charging coordination and
fast vehicle-to-grid var dispatch, considering the uncertainties and charging demands of electric vehicles. The
proposed method is based on a multi-agent system, which distributes complex optimization processes to enhance
computational efficiency. Case studies show that the proposed distributed method reduces up to 92% compu-
tational time without economic losses, compared with the central coordination. It is also observed that the costly
usage of diesel generators can be reduced by employing more vehicle-to-grid var due to their similar func-
tionality in voltage regulation. Surprisingly, it is found that when utilizing the power support from electric
vehicles and diesel generators, the computational time decreases even when more decision variables are added.

1. Introduction

Electric vehicles (EVs) are considered as a promising option for
reducing carbon footprint in populated areas as the energy industry
transitions towards decarbonization. The International Energy Agency
estimates that the sales of passenger light-duty EVs/plug-in hybrid EVs
(PHEVs) will increase significantly from 2020 onwards and might reach

more than 100 million EVs/PHEVs sold per year worldwide by 2050
[1]. With a considerably large population of EVs and an improvement
in battery performance, EVs can function as large-scale distributed
energy storage systems (ESSs) in grid-to-vehicle (G2V) and vehicle-to-
grid (V2G) manners. G2V and V2G refer to two scenarios, which are
using EVs as ESSs to store energy from power systems, and to release
energy to power systems, respectively. Research about employing EVs
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as ESSs to provide active power has been successfully established for a
long time from different perspectives. From the perspective of EVs, the
economic benefits of EV charging have been investigated in [2] while
optimizing the energy management of EVs has been the focus in [3].
From the perspective of microgrids, researchers have also explored the
usage of EVs as distributed energy sources for frequency regulation
[4,5], voltage control [6], and demand peak shaving in power grid [7].
The upgrade of grid components to accommodate the EV charging has
also been considered in [8]. Moreover, EVs can also serve as energy
buffers for intermittent energy sources such as solar and wind energy
[9]. However, using EVs as active power based ESSs causes degradation
in considerably expensive EV batteries [10].

Besides having the role of active power based ESSs, EVs can also
serve as var sources as the technology of EV chargers advances. Var
compensation through EV chargers has been implemented in [11,12].
Different from using EVs to provide active power to the grid, no

degradation of batteries happens in V2G var compensation [13]. A re-
cent study [14] has built a volt-var optimization (VVO) engine to
manage V2G var. VVO is a reactive power dispatch (RPD) method,
which is able to optimize voltage and/or reactive power1 of a dis-
tribution network using volt-var components such as EVs. Nevertheless,
the proposed VVO engine in [14] and other similar methods [15,16]
ignore the uncertainties of EV availability, which further leads to the
neglect of various and fast-changing charging scenarios. If the rapidly
changing nature of the charging scenarios is taken into consideration,
the proposed method in [14] is not sufficiently fast to handle the un-
certain var sources from EVs. This is because the proposed method in
[14] is based on an evolutionary algorithm – genetic algorithm (GA) –
and requires multiple runs of power flow to generate candidate solu-
tions and evolve, which is very time-consuming. Similarly, other evo-
lutionary algorithm-based RPD methods [17,18] are not applicable to

Nomenclature

Abbreviations

BEV Battery electric vehicle
CB Capacitor bank
DG Diesel generator
DGA Diesel generator agent
ESS Energy storage system
EV Electric vehicle
EVA Electric vehicle agent
G2V Grid-to-vehicle
GA Genetic algorithm
ISO Independent system operator
ISOA Independent system operator agent
IVVO Integrated volt-var optimization
LA Load agent
LMP Locational marginal price
OPF Optimal power flow
PHEV Plug-in electric vehicle
PLC Parking lot charging facility
PLCA Parking lot charging agent
RPD Reactive power dispatch
SCADA Supervisory control and data acquisition
V2G Vehicle-to-grid
VPP Virtual power plant
VPPA Virtual power plant agent
VVO Volt-var optimization

Mathematical symbols and operators

∘ the operator of the entrywise product
α i( ) the set of buses that are directly connected to bus i
V̌ and V ̂ the lower and upper voltage magnitude constraints
θ θ θij

t
i
t

j
t= − the voltage angle difference between bus i and j

Ai, Bi and Ci the generation cost coefficient factors of diesel gen-
erators

AM the auxiliary matrix for computing charging power var-
iations

Bij the susceptance of a line ij
Cd the battery degradation cost
Ct the cost at time interval t
and CQ

t the active power and reactive power price cost at time
interval t

Costk the charging cost of kth EV

Cpck
batt the battery capacity of kth EV

DoDlim the maximum depth of discharge
endk the index of the last charging interval of kth EV
Gij the conductance of a line ij
Iτ the charging time interval τ
Ikt the charging interval of the kth EV at time index t
N the number of EVs that are connected to chargers
n the number of remaining time intervals for making deci-

sions
NDG the set of diesel generators
Nnode the number of buses except for the feeder bus
NPL the set of parking lots
Pτ the charging power at time interval τ
Paverage the constant charging power of the average strategy
Pcap

high and Pcap
low the maximum and minimum total active charging
power

Pi ramp
DG
, the maximum ramping up/down rate of ith diesel gen-

erator
Pkt the charging active power of the kth EV at time interval t
Pramp

low and Pramp
high the maximum and minimum variation of the total

charging power
PCi

t and QCi
t the active/reactive power from DGs or parking lots at

time t
PD and QDi

t
i
t the active/reactive power consumption at bus i at

time t
Qkt the charging reactive power of the kth EV at time interval t
Rak the EV charger rating of the kth EV
sτ the state variable at time interval τ
SOCk

ini the initial state of charge of kth EV
SOCk

target the targeted state of charge of kth EV
uτ the decision variable at time τ
UTM the upper unitriangular matrix
V the evaluating function
V j

t the voltage magnitude at bus j
Yij the complex admittance of a line ij
Z the augmented decision variable set
Rai

DG the power rating of ith DG
SOCτ the state of charge at time interval τ

Subscripts and superscripts

k EV index
τ the current time interval index
i and j bus index or device index
t the iterative time interval index

1 Throughout this paper we use the term ‘var’ to denote ‘reactive power’ and
the two terms are interchangeable.
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