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a b s t r a c t

In optical tomography, the radiative properties of the medium under investigation are estimated from
information contained in measurements provided by a set of light sources and sensors located on the
frontier of the probed medium. Such a non-linear ill-posed inverse problem is usually solved through
optimization with the help of gradient-type methods. Since it is well known that such inverse problems
are ill-posed, regularization is required. This paper compares three distinct regularization strategies for
two different optimization algorithms, namely the damped GausseNewton and BFGS algorithms, for the
two-dimensional diffuse approximation to the radiative transfer equation in the frequency domain. More
specifically, the mesh-based regularization is combined with the Tikhonov regularization in the damped
GausseNewton algorithm. For the BFGS algorithm, the mesh-based regularization is combined with the
Sobolev gradients method. Moreover, a space-dependent Sobolev gradients method is proposed for the
first time. The performance of the proposed algorithms are compared by utilizing synthetic data. The
deviation factor and correlation coefficient are used to quantitatively compare the final reconstructions.
Also, three levels of noise are considered to characterize the behaviour of the proposed methods against
measurement noises. Numerical results indicate that the BFGS algorithm outperforms the damped Gauss
eNewton in many aspects.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

In optical tomography, the volumetric radiative properties of the
medium under investigation are estimated from information con-
tained in measurements provided by a set of light sources and
sensors located on the frontier of the probed medium [1,2]. The
main applications of the optical tomography concern the biomed-
ical domain based on the fact that knowledge of the radiative
properties provides information on the physiopathological condi-
tion of biological tissues. These applications include the imaging of
finger joints [3], breast imaging [4,5], functional imaging of brain
activity [6,7] or small-animal imaging [8] for instance.

In order to looking deep into tissue, near-infrared light from
about 650 to 900 nm is delivered through optical fibres because the
absorption of light is relatively low in this spectral range [9].

However, the light is highly scattered at these wavelengths so that
no direct methods can be employed to solve this problem. As a
result, the reconstruction of the radiative property maps is usually
performed through the solution of an inverse problem consisting in
minimizing a cost function which depends on the discrepancy, in a
least-square sense, between the measurements and associated
predictions [1]. This method thus relies on a forward model that
provides predictions assuming the distribution of radiative prop-
erties inside the medium is known.

The commonly accepted light propagation model in partici-
pating media is the radiative transfer equation [10]. This latter
equation is integro-differential and thus heavy computations are
needed to get accurate solutions. The computation may become
highly CPU-time consuming when dealing with inverse problems
for which solutions require large numbers of iterations. Alterna-
tively, if the absorption coefficient of the medium is negligible
compared to its scattering coefficient and if the medium does not
contain void-like regions (i.e. regions in which the absorption and
scattering are very low), then the diffuse approximation to the
radiative transfer equation provides a good approximation for
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describing light propagation in the medium [1,9]. In this case one
talks about the diffuse optical tomography problem and the prop-
erties of interest are reduced scattering and absorption coefficients,
denoted s(x) and k(x), where x is the space variable. The diffuse
approximation in the frequency domain is considered in this paper.
Note that the nonuniqueness of the simultaneous reconstruction of
absorption and reduced scattering coefficients in steady-state
diffuse optical tomography has been demonstrated in Ref. [11].

Many works have been undertaken over the past two decades to
solve this non-linear ill-posed inverse problem, including the non-
linear conjugate-gradient method [12], GausseNewton based
methods [13e16] associated with a wavelet multi-scale method in
Refs. [17,18], shape-based reconstruction method [19,20] or, in a
Bayesian framework, the approximation error method [21,22].
While the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
was successfully used to solve the optical tomography problem
based on the radiative transfer equation in Refs. [23e26], it is rather
surprising to note that its use was not considered, to the best
knowledge of the authors, for the solution of the diffuse optical
tomography problem (excepted in the very recent paper [27]
dedicated to the application of a wavelet multi-scale method
associated with the BFGS method).

This paper is dedicated to a comparison between the BFGS al-
gorithm and the damped GausseNewton algorithm when solving
for the diffuse optical tomography problem. It is well known that
such an inverse problem is ill-posed, thus regularization is
mandatory. In this paper, three regularization tools are developed:
i) mesh-based parameterization of the control variables [28]; ii)
Tikhonov regularization; and iii) Sobolev gradients method [29].
More specifically, the mesh-based regularization is combined with
the Tikhonov regularization in the damped GausseNewton algo-
rithm. For the BFGS algorithm, the mesh-based regularization is
combined with the Sobolev gradients method. In addition, a com-
parison between two strategies is proposed, namely a gradient
scaling and an adimensionalization of the control variables, to deal
with the different orders of magnitude between the two distribu-
tions to be retrieved. In order to quantitatively compared the pro-
posed methods, deviation factor and correlation coefficient will be
used in the numerical part to quantify the accuracy of the re-
constructions. Moreover, in order to fully characterize the behav-
iour of the proposed methods against measurement noises, three
levels of noise will be considered.

Before presenting the work carried out in the paper, it should be
noted that the efficiency of the damped GausseNewton algorithm
to solve the diffuse optical tomography problem was shown in
Ref. [14]. Also, it is worth mentioning that the mesh-based regu-
larization has been studied in Ref. [30] when solving for the diffuse
optical tomography problem with the GausseNewton method
associated with the Tikhonov regularization.

The novelties of the paper can be summarized as follow:

� The quasi-independence of the quasi-optimal Tikhonov
parameter with the dimension of the control-space is shown
and illustrated in the under-determined case (i.e. when the
dimension of the control-space is greater than the number of
measurements).

� A BFGS algorithm which combines together the mesh-based
regularization and the Sobolev gradients method is designed
to solve the diffuse optical tomography problem.

� A space-dependent Sobolev gradients method is developed and
successfully applied for the solution of the diffuse optical to-
mography problem solved by the BFGS algorithm. This regula-
rization tool is totally new, to the best knowledge of the authors,
in the field of inversion.

The paper, which constitutes an extension of a previous work
[31], is organized as follows: section 2 presents the forward model
and its solution by the finite element method. This section also
defines the cost function to be minimized. Section 3 brings math-
ematical tools on: i) strategies to deal with the different orders of
magnitude between the two distributions to be retrieved; ii)
directional derivatives of first and second order of some functions;
and iii) finite element parameterization of the control variables.
Section 4 presents in detail the optimization algorithms. Section 5
provides numerical results on a two-dimensional bounded
domain to compare the different proposed algorithms. Finally, a
detailed derivation of the cost function gradient with the adjoint-
state method and through a continuous Lagrangian formulation is
provided in Appendix A.

As final comment about the current paper, it is worth
mentioning that other types of penalization than the one of
Tikhonov have been used when solving for the diffuse optical to-
mography problem with the GausseNewton method such as non-
convex and nonquadratic penalizations [32,33]. The use of such
penalization terms is out of the scope of the paper.

2. Problem statement

2.1. Forward model

The most commonly used forward model in optical tomography
is the diffuse approximation to the radiative transfer equation
considered in the frequency domain. This is a simple equation
governing the evolution of the photon density within the medium
D , say 4. The diffuse approximation model is written as [1,16,22]:

�V$½DðxÞV4lðxÞ� þ
�
kðxÞ þ 2pin

c

�
4lðxÞ ¼ qldðx � xlÞ cx2D

4lðzÞ þ
A

2gnD

DðzÞV4lðzÞ$n ¼ 0 cz2vD

(1)
where 4l : D/ℂ is the state variable providing predictions for the
l-th pointwise collimated light source, x ¼ ðx1;…; xnD Þ stands for
the space variable, nD is the dimension of D ,
DðxÞ ¼ ½nD ðkðxÞ þ sðxÞÞ��1 is the macroscopic scattering coefficient
(expressed in cm�1), where k(x) and s(x) are respectively the ab-
sorption and reduced scattering coefficients (both expressed in
cm�1), ql is the strength of the l-th source whose modulation fre-
quency equals n, d is the Dirac delta function, xl is located at the
distance 1/s below the site of the l-th sourcewhich is located on the
frontier of D , vD , i is the imaginary unit, c is the speed of light in
the medium D , n is the outer unit normal vector at vD , gnD

is a
dimension-dependent constant (g2 ¼ 1/p, g3 ¼ 1/4) [22] and A is a
parameter that can be derived from the Fresnel laws if specular
reflection is considered [16], or from experimental set-ups [34].

This diffuse approximation to the radiative transfer equation is
used when the specific intensity is assumed to be quasi-isotropic
everywhere in the medium. A detailed description of the diffuse
approximation to the general radiative transfer equation is given in
Ref. [1]. It is well accepted that the diffuse approximationmodel is a
reasonably good approximation of the radiative transfer equation
as soon as the medium under consideration is highly scattering and
satisfies 0≪k≪s.

The partial differential eq. (1) is solved by the finite element
method. To do so, let us define:

bL2ðD Þ ¼
8<:f : D/ℂ such that

Z
D

���f ðxÞ���2 dx< þ∞

9=; (2)
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