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H I G H L I G H T S

• A deep recurrent neural network (RNN) model is used for medium-term thermal load prediction.

• The deep RNN model outperforms a simple multilayer perceptron for time series forecasting.

• An optimization framework is proposed for sizing a thermal storage tank to meet thermal loads.

• The optimization method can be used in selecting a thermal storage tank for use with a building.

• The combined predictions and optimization allow for estimating performance of the tank.
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A B S T R A C T

This paper evaluates the performance of deep recurrent neural networks in predicting heating demand for a
commercial building over a medium-to-long term time horizon (⩾1 week), and proposes a modeling framework
to demonstrate how these longer-term predictions can be used to aid design of a stratified thermal storage tank.
The building sector contributes significantly to primary energy consumption in the US, and as such, there is a
need to predict heating demand in buildings over longer time horizons, and to develop methods that can fa-
cilitate installation, planning and management of distributed generation and thermal storage to meet these
heating demands. Key objectives of this paper are: (a) Investigate how a deep recurrent neural network model
performs in predicting heating demand in campus buildings at University of Utah over multiple weeks, and (b)
develop an optimization framework that which can provide definitive guidelines on sizing a stratified thermal
storage tank without requiring high performance computing resources. The results showed that the predictions
by the deep RNN are comparatively more accurate than those by a 3-layer MLP, and that these deep RNN
predictions can adequately serve as proxy for future demand while considering sizing in the design of a com-
plementary stratified thermal storage tank.

1. Introduction

The building sector is responsible for a significant fraction of the
primary energy consumption and greenhouse emissions in the U.S [1] -
a good portion of which is contributed by space and water heating, as
well as gas equipment usage [2]. With increasing application of dis-
tributed generation and storage systems in order to meet these de-
mands, there is a need for forecasts of heating demands across different
time horizons [3]. Such time horizons for forecasts could be (i) short-
term (< 1week), which is useful for real-time control and optimization
of building energy components, short-term maintenance and immediate
scheduling and management of generation capacity and storage [3–6]
or (ii) medium-to-long term, which concerns planning, installation and

management of distributed generation and storage systems [7], and
decision-making related to demand response strategies [3].

This paper concerns the use of longer-term predictions in aiding
design of a stratified thermal storage. Conventionally, deterministic
energy simulation packages such as eQuest and EnergyPlus are used to
estimate the heating and cooling loads in a building over a longer time
horizon [8]. These physics-based models compute these loads by con-
sidering transient mass and energy balance between different con-
necting zones in a building. However, these energy simulation packages
often require detailed knowledge of building construction and opera-
tional schedules - which are often not available in practice. Thus, these
energy simulation packages often do not accurately predict future de-
mands [9]. As these energy simulation packages require inputs which
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are often uncertain or difficult to obtain, they are often used as com-
parative tools, often prior to the building construction.

As such, machine learning (ML) models that predict future loads
based on past observed data are often employed by energy researchers
and modelers [10]. In prior literature, ML algorithms such as simple
and multivariate linear regression [10,11], non-linear regression

[10–12], multi-layered perceptron neural networks [10,13–15], auto-
regressive techniques [13,16], Gaussian Processes [17] and hybrid
models combining ML models with deterministic thermal networks
[18] have been used to predict electric, heating and cooling loads in
buildings. While these methods, in general, have been successfully
employed in short-term forecasts, comparatively limited work has been

Nomenclature

CHP Combined Heating and Power
GP Gaussian Processes
LSTM Long short term memory
ML Machine Learning
MLP Multi-layered perceptron
NN Neural network
PGU Power Generation Unit
PI Probability of Improvement
RMS Root Mean Squared
RNN Recurrent Neural Network
SMBO Sequential Model-Based Optimization
TS Thermal Storage
α learning rate in gradient descent algorithm
σ sigmoid function serving as a gating function
σg standard deviation associated with GP prediction
∘ element-wise vector multiplier.
γ fraction of heat recovered in heat recovery unit that is

routed to TS
γopt optimal value of γ at a given timestep t
γGP value of γ at a given timestep t predicted by GP
ηPGU electric efficiency of PGU
ηrec thermal efficiency of the heat recovery unit
ζ factor accounting for energy losses outside of heat re-

covery unit
ρ density of water
a acquisition function for Bayesian Optimization
Ac cross-sectional area of each node (m2)
cp specific heat capacity of water (J/Kg K)
ct transient ‘memory’ value in LSTM function
di inner diameter of heat exchanger (mm)
do outer diameter of heat exchanger (mm)
e mean squared error in predicting electricity consumption
Egen electricity provided to the building
ft targets in training data for GP
fe predictions made by GP
g input activation function in LSTM
ht output of LSTM function at given timestep t
hj

m value of hidden node in a neural network in node j, layer
m

hi inner heat transfer coefficient (W/m K2 )
ho outer heat transfer coefficient (W/m K2 )
H height of storage tank (m)
i input gate in LSTM
k thermal conductivity of water (W/mK)
kmat thermal conductivity of heat exchanger material (W/mK)
MI minimum size of training data corresponding to case I

⩾Q Qrec d for GP to predict xopt

MII minimum size of training data corresponding to case II
<Q Qrec d for GP to predict xopt

N total number of nodes
o output gate in LSTM
Qd heating demand in building
Qrec heat recovered in heat recovery unit
Qst heat stored in thermal storage tank
QT bldg, total heat delivered to the building

QTS out, heat delivered by thermal storage to building
s parameter to describe discrepancy between electricity

consumption in test data and that in the corresponding
training data

T stored water temperature (K)
Tm mean stored water temperature (K), computed using

temperatures specific to each node
Th hot water temperature (K)
Tc cold water temperature (K)
Tc in, inlet temperature of water in the cold heat exchanger (K)
Ti temperature of stored water in node i (K)
Th i, temperature of hot water in node i (K)
Th in, inlet temperature of water in the hot heat exchanger (K)
Th in

opt
, optimal inlet temperature of water in the hot heat ex-

changer (K) at a given timestep t
Th in

GP
, optimal inlet temperature of water in the hot heat ex-

changer (K) at a given timestep t
Tc i, temperature of cold water in node i (K)
UA overall heat transfer coefficient of heat exchanger

(W/m K2 )
Vḣ volume flow-rate inside the hot heat exchanger
Vċ volume flow-rate inside the cold heat exchanger
Vċ

opt optimal volume flow-rate inside the cold heat exchanger
Vċ

GP volume flow-rate inside the cold heat exchanger, as pre-
dicted by GP

Vċ
max maximum possible value of Vċ

s date-related variables used as inputs to the deep RNN
model

wji
m weight connecting j in layer m to node i in layer −m 1

w weather variables used as inputs to the deep RNN model
X input features to the deep RNN model
xt input to LSTM activation corresponding to a previous

layer and current timestep t
Xt training input for a given ML algorithm
Xe test input for a given ML algorithm
xopt set of optimal operational variables at a given timestep
xI

opt set of optimal operational variables at a given timestep,
corresponding to case I: ⩾Q Qrec d

xII
opt set of optimal operational variables at a given timestep,

corresponding to case II: <Q Qrec d
xGP set of approximations to optimal operational variables at a

given timestep as predicted by GP
xI

GP set of approximations to optimal operational variables at a
given timestep as predicted by GP, corresponding to case I

xII
GP set of approximations to optimal operational variables at a

given timestep as predicted by GP, corresponding to case II
X feature vector used as inputs to the deep RNN model.
yp predicted value of electricity consumption
ya actual value of electricity consumption
zI train, training input for GP in optimization scheme corre-

sponding to case I: ⩾Q Qrec d

zI test, training input for GP in optimization scheme corre-
sponding to case I: ⩾Q Qrec d

zII train, training input for GP in optimization scheme corre-
sponding to case II: <Q Qrec d

zII test, test input for GP in optimization scheme corresponding to
case II: <Q Qrec d
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