
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Predicting heating demand and sizing a stratified thermal storage tank using deep learning algorithms

Site-Specific Energy Systems Laboratory, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA

HIGHLIGHTS

- A deep recurrent neural network (RNN) model is used for medium-term thermal load prediction.
- The deep RNN model outperforms a simple multilayer perceptron for time series forecasting.
- An optimization framework is proposed for sizing a thermal storage tank to meet thermal loads.
- The optimization method can be used in selecting a thermal storage tank for use with a building.
- The combined predictions and optimization allow for estimating performance of the tank.

ARTICLEINFO

Keywords: Building energy modeling Machine learning Recurrent neural networks Deep learning Heating load prediction Thermal energy storage

ABSTRACT

This paper evaluates the performance of deep recurrent neural networks in predicting heating demand for a commercial building over a medium-to-long term time horizon (>1 week), and proposes a modeling framework to demonstrate how these longer-term predictions can be used to aid design of a stratified thermal storage tank. The building sector contributes significantly to primary energy consumption in the US, and as such, there is a need to predict heating demand in buildings over longer time horizons, and to develop methods that can facilitate installation, planning and management of distributed generation and thermal storage to meet these heating demands. Key objectives of this paper are: (a) Investigate how a deep recurrent neural network model performs in predicting heating demand in campus buildings at University of Utah over multiple weeks, and (b) develop an optimization framework that which can provide definitive guidelines on sizing a stratified thermal storage tank without requiring high performance computing resources. The results showed that the predictions by the deep RNN are comparatively more accurate than those by a 3-layer MLP, and that these deep RNN predictions can adequately serve as proxy for future demand while considering sizing in the design of a complementary stratified thermal storage tank.

1. Introduction

The building sector is responsible for a significant fraction of the primary energy consumption and greenhouse emissions in the U.S [1] - a good portion of which is contributed by space and water heating, as well as gas equipment usage [2]. With increasing application of distributed generation and storage systems in order to meet these demands, there is a need for forecasts of heating demands across different time horizons [3]. Such time horizons for forecasts could be (i) short-term (< 1 week), which is useful for real-time control and optimization of building energy components, short-term maintenance and immediate scheduling and management of generation capacity and storage [3–6] or (ii) medium-to-long term, which concerns planning, installation and

* Corresponding author. *E-mail address:* amanda.d.smith@utah.edu (A.D. Smith).

https://doi.org/10.1016/j.apenergy.2018.06.064

management of distributed generation and storage systems [7], and decision-making related to demand response strategies [3].

This paper concerns the use of longer-term predictions in aiding design of a stratified thermal storage. Conventionally, deterministic energy simulation packages such as eQuest and EnergyPlus are used to estimate the heating and cooling loads in a building over a longer time horizon [8]. These physics-based models compute these loads by considering transient mass and energy balance between different connecting zones in a building. However, these energy simulation packages often require detailed knowledge of building construction and operational schedules - which are often not available in practice. Thus, these energy simulation packages often do not accurately predict future demands [9]. As these energy simulation packages require inputs which

Received 7 March 2018; Received in revised form 8 June 2018; Accepted 9 June 2018 0306-2619/ © 2018 Elsevier Ltd. All rights reserved.

GIP Combined Heating and Power GP Gaussian Processes STM Logs short term memory 7 ML Mukhine Learning 7 MLP Mukhine Learning 7 MLP Mukhine Learning 7 MLP Mukhine Learning 7 MLP Mukhine Learning 7 ML Anoreastant deviation astign			Q _{TS,out}	heat delivered by thermal storage to building
GPGaussian Processetraining dataLSIMLogs short term memoryTMLMachine LearningMLPMulti-layered perceptronNNNeural networkFUProve Generation UnitFUProver Generation UnitFuFuFuProver Generation UnitFuFuFuProver Generation UnitFu <td>CUD</td> <td>Combined Heating and Dewen</td> <td>\$</td> <td></td>	CUD	Combined Heating and Dewen	\$	
LSTMLong short term memoryTstored 'water temperature (K)MLMulti-layered perceptronremean stored water temperature (K)MNNeural networkFitNoNeural networkFitPPProbability of ImprovementFitPIProbability of ImprovementFitPIProbability of ImprovementFitRossRecurrent Neural NetworkFitRossRecurrent Neural NetworkFitRossRossRecurrent Neural Net		0		
ML MLPMachine Learning MLPmean stored water temperatures (K), computed using temperatures of water temperatures (K) conducted using temperatures (K) conducted using temperatures (K) conducted temperature (K) conducted using temperatures (K) conducted temperature (K) conducted temperature (K) conducted using temperature (K) conducted temperature (K) conducted using temperatures (K) temperature of water in mode i (K) mainteend temperature of water in mode i (K) function <br< td=""><td></td><td></td><td>т</td><td></td></br<>			т	
MLPMulti-layered perceptrontemperatures specific to each nodeNNNeural network I_{c} cold water temperature (K)PGUPower Generation Unit I_{c} cold water temperature (K)PRProbability of Improvement I_{c} temperature of water in node i (K)RNNRecurrent Neural Network I_{c} temperature of water in node i (K)RNNRecurrent Neural Network I_{c} temperature of water in the hot heat exchanger (K)Thermal Storage I_{c} temperature of water in node i (K) σ sigmoid function serving as a gating function I_{c} σ sigmoid function serving as a gating function I_{c} σ sigmoid function serving as a gating function I_{c} σ sigmoid function serving as a gating function I_{c} σ sigmoid function serving as a gating function I_{c} σ sigmoid function serving as a gating function I_{c} σ temperature (K)temperature (K) σ function of hast recovery unit that isUA ρ rotation of hast recovery unit that isUA ρ value of γ at a given timestep t V_{c}^{m} ρ value of γ at a given timestep t V_{c}^{m} ρ density of watersigma Optimization a equisition function for Bayesian Optimization V_{c}^{m} ρ value of γ at a given timestep t V_{c}^{m} ρ density of watersigma Optimizationsigma Optimization </td <td></td> <td>•</td> <td></td> <td></td>		•		
NNNeural networkFig.bot water temperature (K)PCUPorekability of ImprovementFig.cold water temperature (K)PIProbability of ImprovementFig.inlet temperature of water in node i (K)RMSNRecurrent Neural NetworkFig.inlet temperature of water in node i (K)SMNOSequential Model-Based OptimizationFig.inlet temperature of water in node i (K)SMNOSequential Model-Based OptimizationFig.inlet temperature of water in the hot heat exchanger (K)SMNOSequential Model-Based OptimizationFig.inlet temperature of water in the hot heat exchanger (K)SMNOSequential Model-Based OptimizationFig.inlet temperature of water in the hot heat exchanger (K)Thermal Storagestandard deviation associated with GP predictionFig.inlet temperature of water in node i (K)Toruted to TSfraction of heat recovery unit that isFig.overall heat transfer coefficient of heat exchangerTypeoptimal value of y at a given timestep rVig.volume flow-rate inside the cold heat exchangerTypedeciric efficiency of PGUVig.volume flow-rate inside the cold heat exchangerTypedeciric efficiency of PGUVig.volume flow-rate inside the cold heat exchangerTypedeciric efficiency of PGUVig.volume flow-rate inside the cold heat exchangerTypedeciric efficiency of PGUVig.vector arabides used as inputs to the deep RNN modelTypedeciric efficiency of PGUVig.vector arabides used as inputs t			I_m	
PFOUProver Generation Unit T_{c} cold water temperature (K)PIProbability of Improvement $T_{c,m}$ indet temperature of low water in the cold heat exchanger (K)RNNRecurrent Neural Network $T_{c,m}$ temperature of low water in node i (K)RNNRecurrent Neural Network $T_{c,m}$ temperature of low water in node i (K)RNNRecurrent Neural Network $T_{c,m}$ temperature of water in node i (K)RNNThermal Storage $T_{c,m}^{(m)}$ optimal inflet temperature of water in node i (K) σ sigmoid function serving as a gating function $T_{c,m}^{(m)}$ optimal inflet temperature of water in node i (K) σ sigmoid function serving as a gating function $T_{c,m}^{(m)}$ optimal inflet temperature of water in node i (K) σ sigmoid function serving as a gating function $T_{c,m}^{(m)}$ optimal value of γ at given timestep t σ element-wise vector multiplier. $T_{c,m}^{(m)}$ volume flow-rate inside the hot heat exchanger $\gamma^{(p)}$ volume of γ at a given timestep t $V_{c}^{(m)}$ volume flow-rate inside the cold heat exchanger $\gamma^{(p)}$ volume flow-rate inside the cold heat exchanger $V_{c}^{(m)}$ volume flow-rate inside the cold heat exchanger $\gamma^{(p)}$ volume flow-rate inside the cold heat exchanger $V_{c}^{(m)}$ volume flow-rate inside the cold heat exchanger $\gamma^{(m)}$ volume flow-rate inside the cold heat exchanger $V_{c}^{(m)}$ volume flow-rate inside the cold heat exchanger $\gamma^{(m)}$ volume flow-rate inside the cold heat exchange			m	· ·
PIProbability of Improvement T_{corr} indet temperature of stored water in neode in (K)RMSRoturent Neural Network T_{corr} temperature of stored water in node in (K)SMBOSequential Model-Based Optimization T_{corr} indet temperature of stored water in node in (K)SMBOSequential Model-Based Optimization T_{corr} optimal inite temperature of water in the hot heat exchanger (K) σ signoid function surving as a gains function T_{corr} optimal inite temperature of water in the hot heat exchanger σ standard deviation associated with QP prediction T_{corr} optimal inite temperature of water in the hot heat exchanger σ standard deviation associated with QP prediction T_{corr} optimal value of γ at a given timestep t V_{corr} γ^{err} optimal value of γ at a given timestep t V_{corr} volume flow-rate inside the cold heat exchanger γ^{err} optimal value of γ at a given timestep t V_{corr} volume flow-rate inside the cold heat exchanger η_{corr} etertic efficiency of PGU V_{corr} volume flow-rate inside the cold heat exchanger η_{corr} acquisition for Bayesian Optimization V_{corr} weight connecting j in layer m to node i in layer $m-1$ q_{corr} specific heat exchanger (mm) X_{corr} X_{corr} d_{corr} outer diameter of heat exchanger (mm) X_{corr} d_{corr} specific heat exchanger (mm) X_{corr} d_{corr} inner diameter of heat exchanger (mm) X_{corr}				
RNN Revertent Neural Network T_i temperature of store water in node i (K)SNN Revertent Neural Network T_{init} temperature of Neuter in node i (K)SNN Sequential Model-Based Optimization T_{init} temperature of Neuter in node i (K)Thermal Storage T_{init} temperature of Neuter in node i (K) σ learning rate in gradient descent algorithm T_{init} σ signoid function serving as a gating function T_{init} σ signoid function second water in node i (K)optimal inlict temperature of Neuter in node i (K) σ signoid function for Predicted by Predicted by GP T_{init} γ^{GP} optimal value of γ at a given timestep t V_i^{CP} γ^{GP} value of γ at a given timestep t predicted by GP V_i^{CP} γ^{GP} optimal value of γ or encry losses outside of heat recovery unit V_i^{CP} ρ density of watersaminum possible value of V_i^{CP} ρ saminum possible value of				•
NNNRecurrent Neural Network $T_{u,u}$ remperature of hot varie in hot has exchanger (K)SNBOGequential Model-Based Optimization $T_{u,u}^{(m)}$ optimal inlet temperature of water in the hot heat exchanger (K)TSThermal Storage $T_{u,u}^{(m)}$ optimal inlet temperature of water in the hot heat exchanger (K) α learning rate in gradient descent algorithm $T_{u,u}^{(m)}$ optimal inlet temperature of water in hot heat exchanger α_{i} elearnit-wise vector multiplier. T_{u} optimal inlet temperature of out water in node i (K) γ fraction of heat recovery unit the tot y at given timestep t V_{i} V_{i} $\gamma^{(m)}$ optimal value of γ at given timestep t recovery unit $V_{i}^{(m)}$ volume flow-rate inside the cold heat exchanger η_{mu} electric efficiency of PGU $V_{i}^{(m)}$ volume flow-rate inside the cold heat exchanger η_{mu} electric efficiency of PGU $V_{i}^{(m)}$ volume flow-rate inside the cold heat exchanger η_{mu} electric efficiency of PGU $V_{i}^{(m)}$ volume flow-rate inside the cold heat exchanger η_{mu} electric officiency of PGU $V_{i}^{(m)}$ volume flow-rate inside the cold heat exchanger η_{mu} electric officiency of PGU $V_{i}^{(m)}$ volume flow-rate inside the cold heat exchanger η_{mu} electric officiency of PGU $V_{i}^{(m)}$ value in STM Muncion a_{in} consestion flow and genetic (M) $V_{i}^{(m)}$ a_{in} encore officiency officience $V_{i}^{(m)}$ a_{in} enc				
SMBOSequential Model-Based Optimization T_{kinn}		•		•
TSThermal Stronge $T_{h,m}^{N_m}$ optimal inlet temperature of water in the hot heat exchanger α learning rate in gradient descent algorithm $T_{h,m}^{N_m}$ optimal inlet temperature of water in the hot heat exchanger σ_c standard deviation associated with GP prediction $T_{h,m}^{N_m}$ optimal inlet temperature of outer in the hot heat exchanger γ fraction of heat recovered in heat recovery unit that is routed to TS V_c temperature of cold water in node i (K) $\gamma^{(P)}$ value of γ at a given timestep t V_c volume flow-rate inside the cold heat exchanger $\gamma^{(P)}$ value of γ at a given timestep t V_c volume flow-rate inside the cold heat exchanger $\gamma^{(P)}$ value of γ at a given timestep t V_c volume flow-rate inside the cold heat exchanger $\gamma^{(P)}$ value of γ at a given timestep t V_c volume flow-rate inside the cold heat exchanger $\gamma^{(P)}$ value of γ at a given timestep t V_c volume flow-rate inside the cold heat exchanger $\gamma^{(P)}$ destription function for Bayesian Optimization W_c value flow anter landse to the deep RNN model a acquisition function for Bayesian Optimization $W_c^{(P)}$ weither variables used as inputs to the deep RNN model d_i inner diameter of heat exchanger (mm) $W_c^{(P)}$ weither variables used as inputs to the deep RNN model d_i inter timestop t $W_c^{(P)}$ target in training data for GP $V_c^{(P)}$ f_i intrastinger (mm) $V_c^{(P)}$ target in insetep t $V_c^{(P)}$ <				-
α learning rate in gradient descent algorithm $\alpha_{\rm p}$ changer (K) at a given timestep t $\sigma_{\rm p}$ standard deviation associated with GP prediction $T_{\rm burn}^{\rm op}$ optimal inlet temperature of cold water in the hot heat exchanger $\sigma_{\rm p}$ element-wise vector multiplier. $T_{\rm c}$ temperature of cold water in node i (K) γ fraction of heat recovered in heat recovery unit that is $V_{\rm p}^{\rm op}$ optimal value of γ at a given timestep t $V_{\rm h}^{\rm c}$ $\gamma^{\rm op}$ value of γ at a given timestep t $V_{\rm h}^{\rm c}$ volume flow-rate inside the cold heat exchanger $\gamma^{\rm op}$ value of γ at a given timestep t $V_{\rm h}^{\rm corr}$ volume flow-rate inside the cold heat exchanger $\gamma^{\rm op}$ value of γ at a given timestep t $V_{\rm h}^{\rm corr}$ volume flow-rate inside the cold heat exchanger $\gamma^{\rm op}$ value of γ at a given timestep t $V_{\rm h}^{\rm corr}$ volume flow-rate inside the cold heat exchanger $\gamma^{\rm op}$ value of γ at a given timestep t $V_{\rm h}^{\rm corr}$ volume flow-rate inside the cold heat exchanger $\gamma_{\rm op}$ density of watersdate-related variables used as inputs to the deep RNN model $\rho_{\rm s}$ acquisition function for Bayesian Optimization $W_{\rm h}^{\rm op}$ weight connecting j in layer m to node i in layer m-1 $\rho_{\rm s}$ set of optimal operational variables at a given timestep t $W_{\rm h}^{\rm opt}$ weight connecting j in layer RN model $\rho_{\rm s}$ transient "memory' value in LSTM function $W_{\rm h}^{\rm opt}$ test input for a given ML algorithm $\rho_{\rm s}$ </td <td></td> <td>• •</td> <td>$T_{h,in}$</td> <td></td>		• •	$T_{h,in}$	
$ \begin{array}{cccc} \sigma_{g} & \mbox{standard} deviation associated with GP prediction \\ \sigma_{g} & \mbox{standard} deviation associated with GP prediction \\ \sigma_{g} & \mbox{standard} deviation associated with GP prediction \\ \sigma_{g} & \mbox{standard} deviation associated with GP prediction \\ \sigma_{g} & \mbox{standard} deviation associated with GP prediction \\ ratio of heat recovered in heat recovery unit that is rotuced to TS \\ \gamma^{GP} & \mbox{value of } \gamma$ at given timestep t V_{i} V_{i} volume flow-rate inside the cold heat exchanger $V_{i}^{GP} & \mbox{value of } \gamma$ at given timestep t V_{i}^{GP} volume flow-rate inside the cold heat exchanger volume flow-rate inside the			$T_{h,in}^{opt}$	• •
$ \begin{array}{cccc} c & standard deviation associated with GP prediction & changer (K) at a given timestep t & C & C & C & C & C & C & C & C & C &$			тGP	· · ·
$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & $	σ		$T_{h,in}^{0,1}$	
γ fraction of heat recovered in heat recovery unit that is routed to TS optimal value of γ at a given timestep t γ^{OP} value of γ at a given timestep t predicted by GP γ^{OP} value of γ at a given timestep t predicted by GP γ^{OP} density of water ζ γ^{OP} density of water ζ γ^{OP} density of water ζ γ^{OP} density of water ζ ζ γ^{OP} density of water ζ ζ γ^{OP} density of water ζ 	$\sigma_{\! m g}$	=	_	
$ \begin{array}{c} routed to TS \\ routed to TS $	o	-		
$ \begin{array}{c} regiment of regiment o$	γ	fraction of heat recovered in heat recovery unit that is	UA	-
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $				
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $			V_h	6
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	γ^{GP}		V_c	
methodfactor accounting for energy losses outside of heat re- covery unitdicted by GP q density of watera a acquisition function for Bayesian Optimization w_{ii}^{Pmx} A_c cross-sectional area of each node (m^2) w_{ii}^{Pmx} a acquisition function for Bayesian Optimization w_{ii}^{Pmx} A_c cross-sectional area of each node (m^2) w_{ii}^{Pmx} c_p specific heat capacity of water $(J/Kg K)$ w_{ii}^{Pmx} a_i inner diameter of heat exchanger (mm) x_i d_i inner diameter of heat exchanger (mm) x_i d_i input features to the deep RNN model d_i input for latter timester of heat exchanger (mm) x_i e mean squared error in predicting electricity consumption x_i f_{gin} electricity provided to the building x_i f_{gin} predictions made by GP x_i^{opt} g_i input activation function in LSTM x_i^{opt} h_i inner heat transfer coefficient ($W/m^2 K$) x_i^{opt} h_i inner heat transfer coefficient ($W/m^2 K$) x_i^{opt} h_i input gate in LSTM x_i^{opt} <t< td=""><td>η_{PGU}</td><td>electric efficiency of PGU</td><td>V_c^{opt}</td><td></td></t<>	η_{PGU}	electric efficiency of PGU	V_c^{opt}	
$ \begin{array}{c} \rho \\ covery unit covers ond in layer m to node i in layer m-1 weight connecting j in layer m to node i in layer m-1 weight connection j in layer m to node i input for a given IISTM function coversponding to a previous layer and current timestep t coversponding to case I: Qme > Q_d set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I coversponding to case I: Qme > Q_d cover lineat recovery unit Qme heat recovery unit Qme heat recovery unit Qme heat scored in thermal storage tank coversponding to case I: Qme > Q_d cover lineat recovery unit cover$	η_{rec}	thermal efficiency of the heat recovery unit	V_c^{or}	
$ \begin{array}{cccc} \rho & density of water & s & date-related variables used as inputs to the deep RNN model \\ mo$	ζ	factor accounting for energy losses outside of heat re-		
aacquisition function for Bayesian Optimizationmodel A_c cross-sectional area of each node (m ²) w_{μ}^{pr} model c_p specific heat capacity of water (J/Kg K) w_{μ}^{pr} weight connecting j in layer m to node i in layer m-1 c_p specific heat capacity of water (J/Kg K)weight connecting j in layer m to node i in layer m-1 d_{i} inner diameter of heat exchanger (mm)X d_{o} outer diameter of heat exchanger (mm)X e mean squared error in predicting electricity consumptionX F_{gr} targets in training data for GP x_{pr} f_{i} targets in training data for GP x_{pr} f_{i} uotput of LSTM function in LSTM X_{epr} h_{i} outer theat transfer coefficient (W/m ² K) x_{r}^{pr} h_{i} input gate in LSTM x_{r}^{pr} h_{i} input gate in LSTM x_{r}^{pr} h_{i} input gate in LSTM x_{r}^{pr} k thermal conductivity of water (W/mK) x_{r}^{pr} k_{mat} thermal conductivity of water (W/mK) x_{r}^{pr} h_{m} numinum size of training data corresponding to case II y_{p} $Q_{rec} < Q_{d}$ for GP to predict x^{ept} x_{r}^{pr} M_{II} minimum size of training data corresponding to case II $y_{rec} < Q_{d}$ $Q_{rec} < Q_{d}$ for GP to predict x^{ept} y_{t} M_{II} minimum size of training data corresponding to case II $y_{rec} < Q_{d}$ $Q_{rec} < Q_{d}$ for GP to predict x^{ept}		covery unit	V_c^{max}	
A_c cross-sectional area of each node (m ²) w_l^m weight connecting j in layer m to node i in layer $m-1$ c_p specific heat capacity of water $(J/Kg K)$ w weight connecting j in layer m to node i in layer $m-1$ c_t transient 'memory' value in LSTM function X weight connecting j in layer m to node i in layer $m-1$ d_i inner diameter of heat exchanger (mm) X_t input features to the deep RNN model d_o outer diameter of heat exchanger (mm) X_t training input for a given ML algorithm e mean squared error in predicting electricity consumption X_t training input for a given ML algorithm E_{gent} electricity provided to the building X_t training input for a given ML algorithm f_g predictions made by GP X_t training input for a given ML algorithm g input activation function in LSTM X_t test input for a given ML algorithm h_t output of LSTM function at given timestep t X_t^{opt} set of optimal operational variables at a given timestep, corresponding to case I: $Q_{rec} < Q_d$ h_i inner heat transfer coefficient (W/m² K) X_t^{opt} X_t^{opt} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I: $Q_{rec} < Q_d$ Q_d h_i input gate in LSTM X_t^{opt} X_t^{opt} X_t^{opt} X_t^{opt} h_i input gate in LSTM X_t^{opt} X_t^{opt} X_t^{opt} X_t^{opt} h_{mat} thermal conductivity of water	ρ	density of water	S	
c_p specific heat capacity of water (J/Kg K)wweather variables used as inputs to the deep RNN model c_t transient 'memory' value in LSTM functionXinput features to the deep RNN model d_i inner diameter of heat exchanger (mm)xinput features to the deep RNN model d_a outer diameter of heat exchanger (mm)xinput to LSTM activation corresponding to a previous e mean squared error in predicting electricity consumptionXtraining input for a given ML algorithm F_{gem} electricity provided to the buildingXtest input for a given ML algorithm f_a targets in training data for GP X_1^{opt} set of optimal operational variables at a given timestep, g input tativation function in LSTMset of optimal operational variables at a given timestep, m value of hidden node in a neural network in node j_a layer x_1^{opt} h_i inner heat transfer coefficient (W/m ² K) x_1^{opt} h_a outer heat transfer coefficient (W/m ² K) x_1^{opt} h_a uuter heat transfer coefficient (W/m ² K) x_1^{opt} h_a uuter heat exchanger material (W/MK) x_1^{opt} k_{mat} thermal conductivity of water (W/mK) x_1^{opt} k_{mat} thermal conductivity of heat exchanger material (W/MK) x_1^{opt} h_m minimum size of training data corresponding to case I y_a $q_{ec} < Q_d$ for GP to predict x^{opt} y_a $q_{ec} < Q_d$ for GP to noptimic x^{opt} y_a <t< td=""><td>а</td><td>acquisition function for Bayesian Optimization</td><td></td><td>model</td></t<>	а	acquisition function for Bayesian Optimization		model
c_t transient 'memory' value in LSTM functionXinput features to the deep RNN model d_i inner diameter of heat exchanger (mm) x_t input to LSTM activation corresponding to a previous d_a outer diameter of heat exchanger (mm) x_t input to LSTM activation corresponding to a previous d_a outer diameter of heat exchanger (mm) x_t input to LSTM activation corresponding to a previous e mean squared error in predicting electricity consumption X_t training input for a given ML algorithm F_{gen} electricity provided to the building x_t^{opt} set of optimal operational variables at a given timestep f_e predictions made by GP x_t^{opt} set of optimal operational variables at a given timestep, gen output of LSTM function at given timestep t x_t^{opt} set of optimal operational variables at a given timestep, n_l inner heat transfer coefficient (W/m ² K) x_t^{opt} set of approximations to optimal operational variables at a h_l input gate in LSTM x_t^{opt} set of approximations to optimal operational variables at a h_i input gate in LSTM x_t^{opt} set of approximations to optimal operational variables at a h_i input gate in LSTM x_t^{opt} set of approximations to optimal operational variables at a h_i input gate in LSTM x_t^{opt} set of approximations to optimal operational variables at a h_i input gate in LSTM x_t^{opt} set of approximations to optimal operational variables at a h_i <	A_c	cross-sectional area of each node (m ²)	w_{ji}^m	
c_t transient 'memory' value in LSTM functionXinput features to the deep RNN model d_i inner diameter of heat exchanger (mm)xinput to LSTM activation corresponding to a previous layer and current timestep t e mean squared error in predicting electricity consumptionXttraining input for a given ML algorithm E_{gen} electricity provided to the buildingXttraining input for a given ML algorithm f_t targets in training data for GP X^{opt} set of optimal operational variables at a given timestep g input activation function in LSTM X^{opt} set of optimal operational variables at a given timestep, corresponding to case I: $Q_{nc} > Q_d$ h_t output of LSTM function at given timestep t X^{opt} set of optimal operational variables at a given timestep, corresponding to case I: $Q_{nc} < Q_d$ h_i inner heat transfer coefficient (W/m ² K) X^{opt}_{1} set of approximations to optimal operational variables at a given timestep as predicted by GP h_n outer heat transfer coefficient (W/m ² K) X^{opt}_{1} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I active timestep as predicted by GP, corresponding to case I $Q_{rc} < Q_d$ for GP to predict x^{opt} X^{fP}_{1} k_{matt} thermal conductivity of water (W/mK) X feature vector used as inputs to the deep RNN model. M_{II} minimum size of training data corresponding to case II Q	c_p	specific heat capacity of water (J/KgK)	w	weather variables used as inputs to the deep RNN model
d_o outer diameter of heat exchanger (mm)layer and current timestep t e mean squared error in predicting electricity consumption X_t training input for a given ML algorithm E_{gent} electricity provided to the building X_e test input for a given ML algorithm f_t targets in training data for GP X_e^{opt} set of optimal operational variables at a given timestep, g input activation function in LSTM X_e^{opt} set of optimal operational variables at a given timestep, g input of LSTM function at given timestep t X_{ff}^{opt} set of optimal operational variables at a given timestep, h_i^{m} value of hidden node in a neural network in node j, layer x_{ff}^{opt} set of optimal operational variables at a given timestep, h_i^{m} output of LSTM function $(W/m^2 K)$ x_{ff}^{opt} set of approximations to optimal operational variables at a h_i inner heat transfer coefficient $(W/m^2 K)$ x_{ff}^{opt} set of approximations to optimal operational variables at a h_i input gate in LSTM x_{ff}^{opt} set of approximations to optimal operational variables at a k thermal conductivity of water (W/mK) x_{ff}^{opt} set of approximations to optimal operational variables at a M_{rot} inimum size of training data corresponding to case I y_{p} predicted value of electricity consumption M_{ff} minimum size of training data corresponding to case II $y_{rec} \geq Q_d$ set of approximations to optimal operational variables at a M_{rot} minimum size of train		transient 'memory' value in LSTM function	Х	
emean squared error in predicting electricity consumption X_t training input for a given ML algorithm E_{gen} electricity provided to the building X_t training input for a given ML algorithm f_t targets in training data for GP X_t test input for a given ML algorithm f_t targets in training data for GP X_t test input for a given ML algorithm g input activation function in LSTMset of optimal operational variables at a given timestep, corresponding to case I: $Q_{rec} \ge Q_d$ h_t output of LSTM function at given timestep t X_t X_t h_t^m output of LSTM function at given timestep t X_t X_t h_t^m output of LSTM function at given timestep t X_t X_t h_t^m output of LSTM function at given timestep t X_t X_t h_t^m output of LSTM function X_t X_t X_t h_t output of LSTM function X_t X_t X_t h_t output of LSTM function X_t X_t X_t h_t output of tast ransfer coefficient $(W/m^2 K)$ X_t X_t h_t input gate in LSTM X_t X_t X_t K thermal conductivity of water (W/mK) X_t X_t M_t thermal conductivity of heat exchanger material (W/mK) X_t feature vector used as inputs to the deep RNN model. M_t minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict x^{opt} X_t feature vector used as inputs to the deep RNN	d_i	inner diameter of heat exchanger (mm)	x _t	input to LSTM activation corresponding to a previous
E_{gen} electricity provided to the building X_e test input for a given ML algorithm f_i targets in training data for GP x_p^{opt} set of optimal operational variables at a given timestep f_e predictions made by GP x_p^{opt} set of optimal operational variables at a given timestep g input activation function at given timestep t x_p^{opt} set of optimal operational variables at a given timestep, h_i output of LSTM function at given timestep t x_1^{opt} set of optimal operational variables at a given timestep, h_i inner heat transfer coefficient (W/m² K) x_1^{opt} set of approximations to optimal operational variables at a h_i inner heat transfer coefficient (W/m² K) x_1^{opt} set of approximations to optimal operational variables at a h_i input gate in LSTM x_1^{opt} set of approximations to optimal operational variables at a i input gate in LSTM x_1^{opt} set of approximations to optimal operational variables at a k thermal conductivity of water (W/mK) x_1^{opt} set of approximations to optimal operational variables at a M_{in} minimum size of training data corresponding to case I y_{in} actual value of electricity consumption M_{in} $Q_{in} GP$ to predict x^{opt} y_{in} actual value of electricity consumption M_{in} $Q_{inc} GP$ to predict x^{opt} y_{in} x_{in} M_{in} $Q_{in} GP$ to predict x^{opt} y_{in} x_{in} M_{in} $Q_{in} GP$ to predict x^{opt}	d_o	outer diameter of heat exchanger (mm)		
f_i targets in training data for GP \mathbf{x}^{opt} set of optimal operational variables at a given timestep f_e predictions made by GP \mathbf{x}^{opt} set of optimal operational variables at a given timestep, \mathbf{g} input activation function in LSTM \mathbf{x}^{opt} set of optimal operational variables at a given timestep, \mathbf{h}_i output of LSTM function at given timestep t \mathbf{x}^{opt} set of optimal operational variables at a given timestep, h_i^m value of hidden node in a neural network in node j , layer \mathbf{x}^{GP} set of approximations to optimal operational variables at a h_i inner heat transfer coefficient ($W/m^2 K$) \mathbf{x}^{GP} set of approximations to optimal operational variables at a h_i inner heat transfer coefficient ($W/m^2 K$) \mathbf{x}^{GP}_1 set of approximations to optimal operational variables at a H height of storage tank (m) \mathbf{x}^{GP}_1 set of approximations to optimal operational variables at a \mathbf{k} thermal conductivity of water (W/mK) \mathbf{x}^{GP}_1 set of approximations to optimal operational variables at a \mathbf{k} thermal conductivity of heat exchanger material (W/mK) \mathbf{x}^{GP}_1 set of approximations to optimal operational variables at a \mathbf{k} thermal conductivity of heat exchanger material (W/mK) \mathbf{x}^{GP}_1 set of approximations to optimal operational variables at a \mathbf{k} thermal conductivity of heat exchanger material (W/mK) \mathbf{x}^{GP}_1 set of approximations to optimal operational variables at a \mathbf{k} thermal conductivity of heat exchanger material (W/m	е	mean squared error in predicting electricity consumption	$\mathbf{X}_{\mathbf{t}}$	training input for a given ML algorithm
f_t targets in training data for GP \mathbf{x}^{opt} set of optimal operational variables at a given timestep f_c predictions made by GP \mathbf{x}^{opt}_{1} set of optimal operational variables at a given timestep, \mathbf{g} input activation function in LSTM \mathbf{x}^{opt}_{1} set of optimal operational variables at a given timestep, \mathbf{h}_{t} output of LSTM function at given timestep t \mathbf{x}^{opt}_{1} set of optimal operational variables at a given timestep, h_{t} output of LSTM function at given timestep t \mathbf{x}^{opt}_{1} set of optimal operational variables at a given timestep, h_{t} output of LSTM function \mathbf{x} given timestep t \mathbf{x}^{opt}_{1} set of approximations to optimal operational variables at a given timestep, h_{t} inner heat transfer coefficient $(W/m^2 K)$ \mathbf{x}^{opt}_{1} set of approximations to optimal operational variables at a given timestep as predicted by GP, h_{o} output of LSTM \mathbf{x}^{GP}_{1} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I \mathbf{h} height of storage tank (m) \mathbf{x}^{GP}_{1} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II \mathbf{k} thermal conductivity of water (W/mK) \mathbf{x}^{GP}_{1} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II \mathbf{k} thermal conductivity of water (W/mK) \mathbf{x}^{GP}_{1} set of approximations to optimal operational variables at a given timestep as predicted value of electricity consumptio	E_{gen}	electricity provided to the building	Xe	test input for a given ML algorithm
f_e predictions made by GP \mathbf{x}_{I}^{opt} set of optimal operational variables at a given timestep, corresponding to case I: $Q_{rec} \ge Q_d$ \mathbf{h}_t output of LSTM function at given timestep t \mathbf{x}_{II}^{opt} set of optimal operational variables at a given timestep, corresponding to case I: $Q_{rec} \ge Q_d$ h_i inner heat transfer coefficient (W/m ² K) \mathbf{x}_{II}^{opt} set of approximations to optimal operational variables at a given timestep as predicted by GP h_o outer heat transfer coefficient (W/m ² K) \mathbf{x}_{II}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP h_i inner heat transfer coefficient (W/m ² K) \mathbf{x}_{II}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I h_i innum size of training data corresponding to case I $Q_{rec} \ge Q_d$ for GP to predict \mathbf{x}^{opt} \mathbf{X}_{II}^{GP} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} \mathbf{X}_{II}^{II} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{Z}_{I.train}$ \mathbf{M}_{Q_d} heating demand in building $\mathbf{Z}_{I.train}$ $\mathbf{Z}_{I.train}$ Q_{rec} heat recovered in heat recovery unit Q_{st} $\mathbf{Z}_{I.test}$ $\mathbf{Z}_{I.test}$ \mathbf{M}_{II} intermal storage tank $\mathbf{Z}_{I.test}$ $\mathbf{Z}_{I.test}$ $\mathbf{Z}_{I.test}$ \mathbf{M}_{II} intermal storage tank $\mathbf{Z}_{I.test}$ $\mathbf{Z}_{I.test}$ $\mathbf{Z}_{I.test}$				set of optimal operational variables at a given timestep
ginput activation function in LSTMcorresponding to case I: $Q_{rec} \ge Q_d$ h_toutput of LSTM function at given timestep t X_{11}^{opt} set of optimal operational variables at a given timestep, corresponding to case II: $Q_{rec} < Q_d$ h_i inner heat transfer coefficient (W/m ² K) X_{11}^{OPt} set of approximations to optimal operational variables at a given timestep as predicted by GP h_i inner heat transfer coefficient (W/m ² K) X_{11}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I H height of storage tank (m) X_{11}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I i input gate in LSTM X_{11}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I k thermal conductivity of water (W/mK) X_{11}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II M_{11} minimum size of training data corresponding to case II y_p predicted value of electricity consumption y_a M_{11} minimum size of training data corresponding to case II $Q_{rec} \ge Q_d$ M_{11} minimum size of training data corresponding to case II $Q_{rec} \ge Q_d$ $Q_{rec} < Q_d$ for GP to predict x^{opt} Z_{11} $Q_{rec} < Q_d$ for GP to predict x^{opt} Z_{11} $Q_{rec} < Q_d$ in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$			$\mathbf{x}_{\mathbf{I}}^{opt}$	
\mathbf{h}_{t} output of LSTM function at given timestep t \mathbf{x}_{II}^{opt} set of optimal operational variables at a given timestep, corresponding to case II: $Q_{rec} < Q_d$ h_{i} inner heat transfer coefficient (W/m ² K) \mathbf{x}_{II}^{Opt} set of approximations to optimal operational variables at a given timestep as predicted by GP h_{o} outer heat transfer coefficient (W/m ² K) \mathbf{x}_{II}^{Opt} set of approximations to optimal operational variables at a given timestep as predicted by GP H height of storage tank (m) \mathbf{x}_{II}^{Opt} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I \mathbf{k} thermal conductivity of water (W/mK) \mathbf{x}_{II}^{Opt} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} \mathbf{X} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} \mathbf{X} N total number of nodes $\mathbf{Z}_{I.train}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} < Q_d$ Q_{rec} heat recovered in heat recovery unit $\mathbf{Z}_{I.train}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $\mathbf{Z}_{I.train}$ training input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$ M_{II} heat stored in thermal storage tank $\mathbf{Z}_{I.test}$ trainin				
h_j^m value of hidden node in a neural network in node j , layer m corresponding to case II: $Q_{rec} < Q_d$ h_i inner heat transfer coefficient (W/m² K) h_o x^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP h_i inner heat transfer coefficient (W/m² K) h_o x^{GP}_i set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II $Q_{rec} \ge Q_d$ for GP to predict x^{opt} X_{II} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict x^{opt} X_{II} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict x^{opt} $Z_{I, train}$ M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict x^{opt} $Z_{I, train}$ M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict x^{opt} $Z_{I, train}$ M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict x^{opt} $Z_{I, train}$ M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict x^{opt} $Z_{I, train}$ Q_d heat stored in thermal sto	-	-	$\mathbf{x}_{\mathrm{II}}^{opt}$	
m \mathbf{x}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP h_i inner heat transfer coefficient (W/m² K) $\mathbf{x}_{\mathrm{II}}^{\mathrm{GP}}$ set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I H height of storage tank (m) $\mathbf{x}_{\mathrm{II}}^{\mathrm{GP}}$ set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I \mathbf{i} input gate in LSTM $\mathbf{x}_{\mathrm{II}}^{\mathrm{GP}}$ set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I \mathbf{k} thermal conductivity of water (W/mK) $\mathbf{x}_{\mathrm{II}}^{\mathrm{GP}}$ set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II $Q_{rec} \geq Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{x}_{\mathrm{II}}^{\mathrm{GP}}$ M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} \mathbf{x}_d M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{z}_{\mathrm{I},\mathrm{train}}$ training input for GP in optimization scheme corre- sponding to case I: $Q_{rec} \geq Q_d$ \mathbf{N} total number of nodes $\mathbf{z}_{\mathrm{I},\mathrm{train}}$ training input for GP in optimization scheme corre- sponding to case I: $Q_{rec} < Q_d$ Q_{rec} heat stored in thermal storage tank $\mathbf{z}_{\mathrm{I},\mathrm{train}}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $\mathbf{z}_{\mathrm{I},\mathrm{train}}$ <		· · · ·		
h_1 initial fract transfer coefficient (W/m R) h_o outer heat transfer coefficient (W/m² K) h_o outer heat transfer coefficient (W/m² K) H height of storage tank (m) i input gate in LSTM k thermal conductivity of water (W/mK) k_{mat} thermal conductivity of heat exchanger material (W/mK) M_I minimum size of training data corresponding to case I $Q_{rec} \ge Q_d$ for GP to predict \mathbf{x}^{opt} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} Q_d heating demand in building Q_{rec} heat stored in thermal storage tank Q_{st} heat stored in thermal storage tank Q_{st} heat stored in thermal storage tank	J		XGP	set of approximations to optimal operational variables at a
h_o outer heat transfer coefficient (W/m² K) \mathbf{x}_{I}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I H height of storage tank (m) \mathbf{x}_{II}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I i input gate in LSTM \mathbf{x}_{II}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II k thermal conductivity of water (W/mK) \mathbf{x}_{II}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II k_{mat} thermal conductivity of heat exchanger material (W/mK) \mathbf{x}_{II}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} \mathbf{x}_{II}^{CP} M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{z}_{I.train}$ M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{z}_{I.train}$ M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{z}_{I.train}$ M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ $\mathbf{z}_{I.train}$ $\mathbf{z}_{I.train}$ $Q_{rec} < Q_d$ heating demand in building Q_{st} $\mathbf{z}_{I.train}$ <th< td=""><td>h_i</td><td>inner heat transfer coefficient $(W/m^2 K)$</td><td></td><td>given timestep as predicted by GP</td></th<>	h_i	inner heat transfer coefficient $(W/m^2 K)$		given timestep as predicted by GP
H height of storage tank (m)given timestep as predicted by GP, corresponding to case I i input gate in LSTM x_{II}^{GP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case I k thermal conductivity of water (W/mK) x_{III} given timestep as predicted by GP, corresponding to case II k_{maat} thermal conductivity of heat exchanger material (W/mK) x_{III} given timestep as predicted by GP, corresponding to case II M_{II} minimum size of training data corresponding to case II y_p predicted value of electricity consumption M_{III} minimum size of training data corresponding to case II y_a actual value of electricity consumption M_{III} minimum size of training data corresponding to case II y_a actual value of electricity consumption M_{III} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{z}_{I,train}$ M_{III} minimum of nodes $\mathbf{z}_{I,train}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$ N total number of nodes $\mathbf{z}_{I,train}$ $\mathbf{z}_{I,train}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$ Q_{d} heat recovered in heat recovery unit $\mathbf{z}_{I,test}$ tas input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $\mathbf{z}_{I,test}$ test input for GP in optimization scheme corresponding to case II: $Q = \leq Q_d$ Q_{st}	_		$\mathbf{x}_{\mathbf{I}}^{\mathbf{GP}}$	set of approximations to optimal operational variables at a
iinput gate in LSTM \mathbf{x}_{II}^{OP} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case IIkthermal conductivity of water (W/mK) \mathbf{X} set of approximations to optimal operational variables at a given timestep as predicted by GP, corresponding to case II k_{mat} thermal conductivity of heat exchanger material (W/mK) \mathbf{X} feature vector used as inputs to the deep RNN model. M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} \mathbf{X} realize of electricity consumption \mathbf{x}_a M_{II} minimum size of training data corresponding to case II $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{Z}_{I,train}$ training input for GP in optimization scheme corre- sponding to case I: $Q_{rec} \ge Q_d$ Ntotal number of nodes $\mathbf{Z}_{I,test}$ training input for GP in optimization scheme corre- sponding to case I: $Q_{rec} \ge Q_d$ Q_d heat recovered in heat recovery unit Q_{st} $\mathbf{Z}_{I,test}$ training input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $\mathbf{Z}_{I,test}$ test input for GP in optimization scheme corresponding to case II: $Q_{-ec} < Q_d$				given timestep as predicted by GP, corresponding to case I
kthermal conductivity of water (W/mK)given timestep as predicted by GP, corresponding to case IIkthermal conductivity of heat exchanger material (W/mK)X M_I minimum size of training data corresponding to case I y_p M_{II} minimum size of training data corresponding to case II y_p M_{II} minimum size of training data corresponding to case II y_q M_{II} minimum size of training data corresponding to case II y_q $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} $\mathbf{z}_{I,train}$ N total number of nodes $\mathbf{z}_{I,test}$ 0 output gate in LSTM $\mathbf{z}_{I,train}$ Q_{d} heat recovered in heat recovery unit $\mathbf{z}_{I,train}$ Q_{st} heat stored in thermal storage tank $\mathbf{z}_{I,test}$ $\mathbf{Z}_{I,test}$ $\mathbf{z}_{I,test}$		5 S	$\mathbf{x_{II}^{GP}}$	set of approximations to optimal operational variables at a
k_{mat} thermal conductivity of heat exchanger material (W/mK)Xfeature vector used as inputs to the deep RNN model. M_I minimum size of training data corresponding to case I y_p predicted value of electricity consumption M_{II} minimum size of training data corresponding to case II y_p actual value of electricity consumption M_{II} minimum size of training data corresponding to case II y_a actual value of electricity consumption M_{II} minimum size of training data corresponding to case II y_a actual value of electricity consumption M_{II} minimum size of training data corresponding to case II y_a actual value of electricity consumption N total number of nodes $z_{I, train}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$ Q_d heat recovered in heat recovery unit $z_{I, train}$ training input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $z_{II, test}$ test input for GP in optimization scheme corresponding to case II: $Q_{-ec} < Q_d$				given timestep as predicted by GP, corresponding to case II
M_I minimum size of training data corresponding to case I y_p predicted value of electricity consumption M_{II} minimum size of training data corresponding to case II y_a actual value of electricity consumption M_{II} minimum size of training data corresponding to case II y_a actual value of electricity consumption M_{II} minimum size of training data corresponding to case II y_a actual value of electricity consumption N total number of nodes $z_{I,train}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$ Q_d heating demand in building $z_{I,train}$ training input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $z_{I,test}$ training input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $z_{I,test}$ test input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$		•	Х	feature vector used as inputs to the deep RNN model.
$\begin{array}{cccc} Q_{rec} \geq Q_d \text{ for GP to predict } \mathbf{x}^{opt} & y_a \\ M_{II} & \text{minimum size of training data corresponding to case II} \\ Q_{rec} < Q_d \text{ for GP to predict } \mathbf{x}^{opt} \\ N & \text{total number of nodes} \\ 0 & \text{output gate in LSTM} \\ Q_d & \text{heating demand in building} \\ Q_{rec} & \text{heat recovered in heat recovery unit} \\ Q_{st} & \text{heat stored in thermal storage tank} \\ \end{array} \qquad \begin{array}{c} y_a \\ \mathbf{z}_{I, train} \\ \mathbf{z}_$			y_n	
$M_{II} \qquad \text{minimum size of training data corresponding to case II} \\ Q_{rec} < Q_d \text{ for GP to predict } \mathbf{x}^{opt} \\ N \qquad \text{total number of nodes} \\ 0 \qquad \text{output gate in LSTM} \\ Q_d \qquad \text{heating demand in building} \\ Q_{rec} \qquad \text{heat recovered in heat recovery unit} \\ Q_{st} \qquad \text{heat stored in thermal storage tank} \\ Q_{st} \qquad \text{heat stored in thermal storage tank} \\ Z_{I,train} \qquad \text{training input for GP in optimization scheme corresponding to case I: } Q_{rec} > Q_d \\ Training input for GP in optimization scheme corresponding to case I: Q_{rec} > Q_dtraining input for GP in optimization scheme corresponding to case I: Q_{rec} < Q_dtraining input for GP in optimization scheme corresponding to case I: Q_{rec} < Q_dtraining input for GP in optimization scheme corresponding to case II: Q_{rec} < Q_dtest input for GP in optimization scheme corresponding to case II: Q_{rec} < Q_dtest input for GP in optimization scheme corresponding to case II: Q_{rec} < Q_dtest input for GP in optimization scheme corresponding to case II: Q_{rec} < Q_dtest input for GP in optimization scheme corresponding to case II: Q_{rec} < Q_d$	141	· · ·		actual value of electricity consumption
M_{II} Initial size of training data corresponding to case if $Q_{rec} < Q_d$ for GP to predict \mathbf{x}^{opt} sponding to case I: $Q_{rec} \ge Q_d$ Ntotal number of nodes $\mathbf{Z}_{I,test}$ raining input for GP in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$ Ooutput gate in LSTM $\mathbf{Z}_{I,test}$ $\mathbf{Z}_{I,test}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$ Q_dheat recovered in heat recovery unit $\mathbf{Z}_{II,train}$ $\mathbf{Z}_{II,train}$ $\mathbf{Z}_{II,test}$ Q_{st}heat stored in thermal storage tank $\mathbf{Z}_{II,test}$ $\mathbf{Z}_{II,test}$ $\mathbf{Z}_{II,test}$	м			
Ntotal number of nodes $\mathbf{z}_{I,test}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$ Ooutput gate in LSTM $\mathbf{z}_{I,test}$ training input for GP in optimization scheme corresponding to case I: $Q_{rec} \ge Q_d$ Q_dheat recovered in heat recovery unit $\mathbf{z}_{I,train}$ training input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$ Q_{st}heat stored in thermal storage tank $\mathbf{z}_{I,test}$ training input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$	IVI		-,	
Ntotal number of notessponding to case I: $Q_{rec} \ge Q_d$ ooutput gate in LSTMsponding to case I: $Q_{rec} \ge Q_d$ Q_d heating demand in building $Z_{II, train}$ training input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $Z_{II, test}$ test input for GP in optimization scheme corresponding to case II: $Q_{rec} < Q_d$	N		ZLtest	
Q_d heating demand in building $\mathbf{z}_{II,train}$ training input for GP in optimization scheme corre- sponding to case II: $Q_{rec} < Q_d$ Q_{rec} heat recovered in heat recovery unit $\mathbf{z}_{II,train}$ training input for GP in optimization scheme corre- sponding to case II: $Q_{rec} < Q_d$ Q_{st} heat stored in thermal storage tank $\mathbf{z}_{II,test}$ test input for GP in optimization scheme corresponding to case II: $Q_{-sc} < Q_d$			1,0050	
Q_{d} heating defining in building Q_{rec} heat recovered in heat recovery unit Q_{st} heat stored in thermal storage tank $Z_{II,test}$ input for GP in optimization scheme corresponding to $C_{rec} < Q_{d}$ $C_{II,test}$ test input for GP in optimization scheme corresponding to $C_{rec} < Q_{d}$			ZII train	
Q_{st} heat stored in themal storage tank $z_{II,test}$ test input for GP in optimization scheme corresponding to case II: $Q_{st} < Q_{st}$			11,114111	• • •
Q_{st} heat stored in the main storage tank case II: $0 < 0$		-	ZII tast	
$Q_{T,klas}$ total heat delivered to the building		ě	11,1081	
	$Q_{T,bldg}$	total heat delivered to the building		

are often uncertain or difficult to obtain, they are often used as comparative tools, often prior to the building construction.

As such, machine learning (ML) models that predict future loads based on past observed data are often employed by energy researchers and modelers [10]. In prior literature, ML algorithms such as simple and multivariate linear regression [10,11], non-linear regression [10–12], multi-layered perceptron neural networks [10,13–15], autoregressive techniques [13,16], Gaussian Processes [17] and hybrid models combining ML models with deterministic thermal networks [18] have been used to predict electric, heating and cooling loads in buildings. While these methods, in general, have been successfully employed in short-term forecasts, comparatively limited work has been Download English Version:

https://daneshyari.com/en/article/6679693

Download Persian Version:

https://daneshyari.com/article/6679693

Daneshyari.com