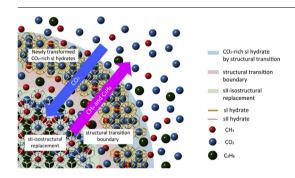
ELSEVIER

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Structural transition induced by cage-dependent guest exchange in $\text{CH}_4 + \text{C}_3\text{H}_8$ hydrates with CO_2 injection for energy recovery and CO_2 sequestration



Yohan Lee^a, Wonjung Choi^a, Young-ju Seo^b, Joo Yong Lee^b, Jaehyoung Lee^b, Yongwon Seo^{a,*}

HIGHLIGHTS

- The guest exchange behavior during replacement was quantitatively investigated.
- The CO₂ occupation induced the depletion of C₃H₈ in the large 5¹²6⁴ cages of sII.
- The partial structural transition occurred in the CH₄ + C₃H₈ - CO₂ replacement.
- The replacement was more significant at higher pressure of injected CO₂.

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords: Gas hydrate Replacement CO_2 sequestration Structure II Strucutral transition

ABSTRACT

This study investigated a structural transition induced by cage-dependent guest exchange in the CH₄ + C₃H₈ hydrate with CO_2 injection for CH_4 recovery and CO_2 sequestration. The influence of the CO_2 replacement on the crystalline structure of initial $CH_4+C_3H_8$ hydrates and the cage-dependent distribution of guest molecules were quantitatively investigated using powder X-ray diffraction, ¹³C nuclear magnetic resonance spectroscopy, and gas chromatography. The quantitative analyses demonstrated that the CO2 occupation caused the depletion of C₃H₈ molecules in the large 5¹²6⁴ cages of structure II hydrates, thereby resulting in the subsequent transformation into CO2-rich sI hydrates and the coexistence of structure I and structure II hydrates after the replacement. The guest-exchange behavior observed from time-dependent Raman spectra indicated that the replacement rate was increased with an increase in pressure of injected CO2 and that the extent of the replacement was enhanced at higher pressure of injected CO₂. Overall experimental evidence of the partial structural-transition replacement suggests that CO2 molecules first occupied structure II hydrates predominantly with the rapid guest exchange at the surface and that the initial structure II hydrates were subsequently converted to the CO2-rich structure I hydrates from the surface to the inner side. Precise identification of the mechanism responsible for the partial structural transition occurring in the CH₄ + C₃H₈ - CO₂ replacement will be very helpful in developing a strategy for actual CO2 injection into structure II gas hydrate reservoirs for energy recovery and CO2 sequestration.

^a School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea

b Petroleum and Marine Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea

^{*} Corresponding author.

E-mail address: ywseo@unist.ac.kr (Y. Seo).

Y. Lee et al. Applied Energy 228 (2018) 229-239

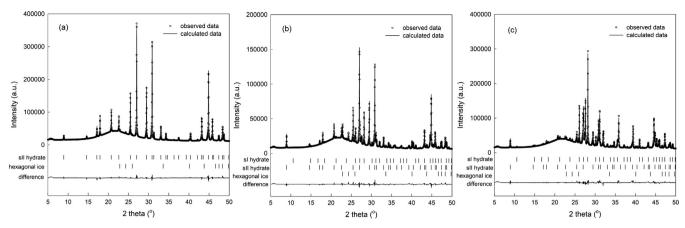


Fig. 1. PXRD patterns of (a) the initial $CH_4 + C_3H_8$ hydrate, (b) the hydrate replaced at 2.4 MPa of P_{CO2} , and (c) the hydrate replaced at 3.9 MPa of P_{CO2} . The vertical tick marks represent the calculated positions of diffraction peaks for sI, sII hydrates, and hexagonal ice.

Table 1 Crystallographic information regarding initial $CH_4 + C_3H_8$ hydrate and hydrates replaced at 2.4 and 3.9 MPa of P_{CO2} .

		Initial CH ₄ + C ₃ H ₈ hydrate	Replaced hydrate at 2.4 MPa of P_{CO2}	Replaced hydrate at 3.9 MPa of P_{CO2}
Structure		sII, cubicFd3m	sI, cubic $Pm\bar{3}n$ sII, cubic $Fd\bar{3}m$ a = 11.8384(2) Å (sI) a = 17.1336(1) Å (sII)	sI, cubic $Pm\bar{3}n$ sII, cubic $Fd\bar{3}m$ a = 11.8394(6) Å (sI) a = 17.1341(9) Å (sII)
Lattice parameter		a = 17.1337(5) Å (sII)		
Phase ratio*	sI sII Ice	- 99.5 ± 2.5% 0.5 ± 0.1%	15.7 ± 0.8% 79.9 ± 2.0% 4.4 ± 0.1%	64.2 ± 2.0% 34.9 ± 1.5% 0.9 ± 0.1%
R_{wp}		9.0%	12.4%	13.1%

 $^{^{\}ast}\,$ The phase ratio was determined on the basis of the ratio of water molecules in each phase.

1. Introduction

Gas hydrates, also referred to as clathrate hydrates, are host-guest compounds that stabilize under specific temperature and pressure conditions with the occupation of proper-sized guest molecules in host cages made up of hydrogen-bonded water molecules [1]. In particular, various biogenic and thermogenic hydrocarbons are entrapped in natural gas hydrates (NGHs), which are found in deep-ocean sediments of continental margins or underneath permafrost regions in the form of three distinct structures. NGHs predominantly occur in the form of structure I (sI), which consists of pentagonal dodecahedron (512) and tetrakaidecahedron (51262) cages and primarily originates from biogenic gases heavily weighted to methane (CH₄). NGHs in the form of structure II (sII), which is composed of pentagonal dodecahedron (5¹²) and hexakaidecahedron (51264) cages, generally contain other larger hydrocarbons, such as C_2H_6 , C_3H_8 , and C_4H_{10} , together with CH_4 . It has recently been revealed that NGHs in the form of structure H (sH), which consists of pentagonal dodecahedron (512), irregular dodecahedron (43563), and icosahedron (51268) cages, also occur in the gas hydrate reservoirs with thermogenic gases that contain much larger hydrocarbons, such as methylcyclopentane and neohexane [2,3].

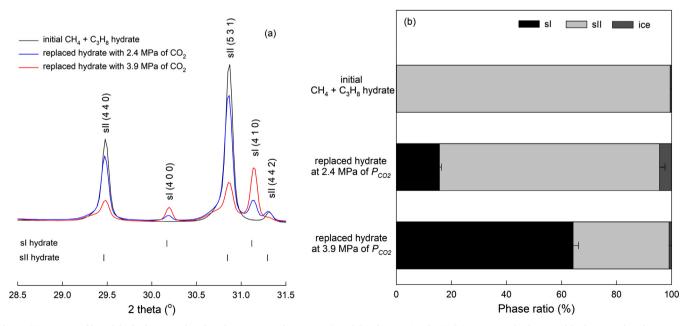


Fig. 2. (a) PXRD profiles of the hydrates replaced in the 2θ range of $28.5-31.5^{\circ}$, and (b) phase ratio of initial $CH_4 + C_3H_8$ hydrate, and hydrates replaced at 2.4 and 3.9 MPa of P_{CO2} .

Download English Version:

https://daneshyari.com/en/article/6679702

Download Persian Version:

https://daneshyari.com/article/6679702

<u>Daneshyari.com</u>