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ARTICLE INFO ABSTRACT
Keywords: This study investigated a structural transition induced by cage-dependent guest exchange in the CH4 + C3Hg
Gas hydrate hydrate with CO, injection for CH,4 recovery and CO, sequestration. The influence of the CO, replacement on the
Replacement ) crystalline structure of initial CH4 + C3Hg hydrates and the cage-dependent distribution of guest molecules were
CO2 sequestration quantitatively investigated using powder X-ray diffraction, *C nuclear magnetic resonance spectroscopy, and

Structure II

Strucutral transition gas chromatography. The quantitative analyses demonstrated that the CO, occupation caused the depletion of

CsHg molecules in the large 5'%6* cages of structure II hydrates, thereby resulting in the subsequent transfor-
mation into COx-rich sI hydrates and the coexistence of structure I and structure II hydrates after the replace-
ment. The guest-exchange behavior observed from time-dependent Raman spectra indicated that the replace-
ment rate was increased with an increase in pressure of injected CO, and that the extent of the replacement was
enhanced at higher pressure of injected CO,. Overall experimental evidence of the partial structural-transition
replacement suggests that CO, molecules first occupied structure II hydrates predominantly with the rapid guest
exchange at the surface and that the initial structure II hydrates were subsequently converted to the CO,-rich
structure I hydrates from the surface to the inner side. Precise identification of the mechanism responsible for the
partial structural transition occurring in the CH4 + C3Hg - CO, replacement will be very helpful in developing a
strategy for actual CO, injection into structure II gas hydrate reservoirs for energy recovery and CO, seques-
tration.
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Fig. 1. PXRD patterns of (a) the initial CH4 + C3Hg hydrate, (b) the hydrate replaced at 2.4 MPa of P¢oz, and (c) the hydrate replaced at 3.9 MPa of P¢q,. The vertical
tick marks represent the calculated positions of diffraction peaks for sl, sII hydrates, and hexagonal ice.

Table 1 1. Introduction

Crystallographic information regarding initial CH,4 + C3Hg hydrate and hy-

drates replaced at 2.4 and 3.9 MPa of Pcop. Gas hydrates, also referred to as clathrate hydrates, are host-guest
Initial Replaced hydrate  Replaced hydrate compounds that stabilize under specific temperature and pressure
CH,4 + C3Hg at 2.4 MPa of Pco,  at 3.9 MPa of Pco, conditions with the occupation of proper-sized guest molecules in host
hydrate cages made up of hydrogen-bonded water molecules [1]. In particular,

various biogenic and thermogenic hydrocarbons are entrapped in nat-

Structure sil, cubicFd3m :ii,c:f;fcpsg; zii,csf;fcps;; ural gas hydrates (NGHs), which are found in deep-ocean sediments of
Lattice parameter a=171337G5) A a=11.8384(2) A a = 11.8394(6) & continental margins or underneath permafrost regions in the form of
(sID) (sD) (sD) three distinct structures. NGHs predominantly occur in the form of
a=17.1336(1) A a=17.1341(9) A structure I (sI), which consists of pentagonal dodecahedron (5'%) and
I I tetrakaidecahedron (5'26%) cages and primarily originates from bio-
Phase ratio’ sl - 15.7 * 0.8% 64.2 = 2.0% genic gases heavily weighted to methane (CH,). NGHs in the form of
siL. - 99.5 *+ 2.5% 79.9 *+ 2.0% 34.9 = 1.5% structure II (sII), which is composed of pentagonal dodecahedron (5'%)

Ice 05 * 0.1% 4.4 * 0.1% 0.9 + 0.1% . 12,4 .
and hexakaidecahedron (5“6) cages, generally contain other larger
Rup 9.0% 12.4% 13.1% hydrocarbons, such as C,Hg, CsHg, and C4H; 0, together with CHy. It has

recently been revealed that NGHs in the form of structure H (sH), which
consists of pentagonal dodecahedron (5%, irregular dodecahedron
(435%6), and icosahedron (5'%6%) cages, also occur in the gas hydrate
reservoirs with thermogenic gases that contain much larger hydro-
carbons, such as methylcyclopentane and neohexane [2,3].

* The phase ratio was determined on the basis of the ratio of water molecules
in each phase.
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Fig. 2. (a) PXRD profiles of the hydrates replaced in the 26 range of 28.5-31.5°, and (b) phase ratio of initial CH4 + C3sHg hydrate, and hydrates replaced at 2.4 and
3.9 MPa of Pcoaz.
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