Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom

Simon H. Roberts^{a,*}, Barney D. Foran^b, Colin J. Axon^c, Benjamin S. Warr^{d,1}, Nigel H. Goddard^e

^a Arup, 13 Fitzroy Street, London W1T 4BQ, UK

^b Institute of Land Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia

^c Institute of Energy Futures, Brunel University, London UB8 3PH, UK

^d Executive in Residence, INSEAD Social Innovation Center, Europe Campus, Boulevard de Constance, 77305 Fontainebleau, France

^e School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, Scotland, UK

HIGHLIGHTS

• We dynamically model energy demand for the UK's fifth carbon budget.

- We model fastest feasible growth of nuclear and offshore wind capacity for the UK.
- Deploying offshore wind early gives lower cumulative CO₂ emissions.
- Our model supports national policy discussion of energy infrastructure investments.
- We model effects of infrastructure investment on employment.

ARTICLE INFO

Keywords: Low-carbon transition CCS Nuclear new build Offshore wind generation System dynamics

ABSTRACT

The UK has an ambitious target of an 80% reduction in carbon dioxide emissions by 2050, to be reached using a series of 'carbon budgets' to aid policy development. Current energy systems modelling methods do not explore, or are unable to account for, physical (thermodynamic) limits to the rate of change of infrastructure. The power generation sector has a variety of technological options for this low-carbon transition. We compare physically constrained scenarios that accentuate either carbon capture and storage, fastest plausible nuclear new build, or fastest plausible build rate of offshore wind. We set these in the context of the UK's legislated fifth carbon budget, which has a comprehensive range of carbon reduction measures with respect to business-as-usual. The framework for our scenario comparison uses our novel system dynamics model to substantiate the policy's ability to meet 2035 emissions targets while maintaining financial productivity and socially expected employment levels. For an ambitious nuclear new build programme we find that even if it stays on track it is more expensive than offshore wind generation and delays emissions reductions. This affects the cumulative emissions and impacts on the UK's ability to contribute to international climate change targets. If delays or cancellation occur to the deployment programmes of carbon capture and storage technologies or nuclear new build, we suggest the electricity and decarbonisation targets can by met by a fast growth of offshore wind generation with no change to financial and employment levels.

1. Introduction and background

International deliberations ranging from the United Nations' Conference of the Parties to the World Economic Forum highlight significant global challenges for energy use and climate change (and some solutions), left then for individual countries to embrace and implement. The outcomes are frequently muted and inevitably delayed. The 2015 Paris Climate Change Agreement [1] committed all countries to constraining temperature increase within one action plan, while emphasising the plight faced by developing and vulnerable countries. In the World Economic Forum's Risks Report [2] two of the five most important interconnected risks were 'unemployment and under-employment leading to social instability' and 'failure of climate change mitigation and adaptation'. Energy policy and science are broadening to

* Corresponding author.

E-mail addresses: Simon.Roberts@arup.com (S.H. Roberts), Colin.Axon@Brunel.ac.uk (C.J. Axon), bwarr@sun.ac.za (B.S. Warr), Nigel.Goddard@ed.ac.uk (N.H. Goddard).

¹ Currently at: Faculty of AgriSciences, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa.

https://doi.org/10.1016/j.apenergy.2018.06.078 Received 1 March 2018; Received in revised form 13 June 2018; Accepted 17 June 2018

^{0306-2619/ © 2018} Elsevier Ltd. All rights reserved.

Nomenclature		elec_sup'	supply of electricity by power generation net of measures (a flow)	
Software and Data availability		EVN	energy efficient vehicle number (a stock)	
Name of software	7see-GB	E VINI	(a flow)	
Contact	Dr. Simon H. Roberts (corresponding author)	FC	fixed capital (a stock)	
Programming envi	ronment Vensim	FCF	fixed capital formation (a flow)	
Availability	Freely available as a Vensim Reader version. The	fuel_dmd	demand for fuel from power generation, in-	
	full model is also freely available from the cor-		dustry or dwellings (a flow)	
	responding author.	gas_dmd	demand for gas from industry, dwellings or	
Data	All data sources used in this paper are included	aas duud	transport (a flow)	
Download URI	http://dx.doi.org/10.7488/ds/2252	gas_ama	transport pet of measures (a flow)	
Year first available	2017	GC	generating capacity (a stock)	
Hardware required	1 2.0 GHz processor with 2 Gb memory	GCD	generating capacity decrease (a flow)	
Software required	Windows (XP/Vista/7/8/8.1) or Macintosh OSX	GCI	generating capacity increase (a flow)	
	(10.4+)	GCUC	generating capacity under construction (a stock)	
Program size	10 Mb	GFCF	gross fixed capital formation (a flow)	
		HPN	heat pump number in dwellings (a stock)	
Acronyms		HPNI	heat pump number increase (a flow)	
FCD	sconaria of the fifth carbon budget of the	inv_final_dmd'	final demand for investment (GFCF) net of	
3CD	Committee on Climate Change	k	measures (a flow)	
AFC	actual final consumption	n. meas	numbering of muustries as consumers of inputs	
BAU	business as usual	n	numbering of individual new build nuclear	
CCS	carbon capture and storage		power stations	
CCT	combined cycle turbine (for gas generation)	р	production by industry, as classified by industry,	
FC	fixed capital		at basic prices (a flow)	
FCF	fixed capital formation	pet-prod_dmd	demand for petroleum products from industry,	
FNNB	scenario of fastest nuclear new build		dwellings or transport (a flow)	
FOfW	scenario of fastest offshore wind generation	PVN	PHEV vehicle number (a stock)	
CECE	growth	PVNI	PHEV vehicle number increase (a flow)	
GFCF	gross fixed capital formation	t wah turuni	time, in years	
NDISH	non-profit institutions serving household	ven_travet	(a flow)	
PHEV	plug-in hybrid electric vehicle	VN	(a now) vehicle number (a stock)	
	prag in hybrid electric remete	VNI	vehicle number (a block)	
Nomenclature, model variables and suffices				
		Nomenclature, time	Nomenclature, time-dependent exogenous coefficients	
b_n	beginning year for construction of nuclear			
DALL	power station n	CC(t)	fuel consumption coefficient for travel	
BAU	business as usual	CF(t)	CO_2 capture factor	
<i>c</i> _n	completion year for construction of nuclear	CIC(t)	CO_2 intensity coefficient	
CCSI	CCS increase (a flow)	ECOE(l)	ficient	
CE	carbon emissions (a flow)	ECoP(t)	extra cost of PHEV vehicle as a coefficient	
CE'	carbon emissions net of measures (a flow)	EF(t)	efficiency factor	
CGC	construction of generating capacity (a flow)	EIC(t)	electricity increase coefficient	
CO _{2_} capture	emissions of CO ₂ captured by CCS (a flow)	FRC(t)	fuel reduction coefficient	
consump_factor	consumption factor implementing reduction in	GtFC(t)	GCI-to-FCF coefficient	
	AFC in order to meet demand for FCF _{meas}	HRC(t)	heating reduction coefficient	
DN	dwelling number (a stock)	OC(t)	output coefficient	
DNI	dwelling number increase (a flow)	OLF(t)	output loss factor	
EDN	energy efficient dwelling number (a stock)	PC(t)	production coefficient	
EDNI	energy efficient dwelling number increase (a	pGFCF(<i>t</i>)	coefficient for proportion of GFCF provided by	
alac dmd	1000) domand for algorithisty from industry, dwallings		nnal products from either of manufacturing,	
cici_uniu	or transport (a flow)	BBO(t)	rate of biofuel output	
elec dmd'	demand for electricity from industry, dwellings	TC(t)	travel coefficient	
	or transport net of measures (a flow)	UC(t)	utility coefficient	
elec_sup	supply of electricity by power generation			
	(a flow)			

Download English Version:

https://daneshyari.com/en/article/6679716

Download Persian Version:

https://daneshyari.com/article/6679716

Daneshyari.com