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H I G H L I G H T S

• Hybrid energy management is adopted for networked microgrids.

• Risk control is incorporated by introducing mean–variance Markowitz theory.

• Two-stage energy management is proposed to improve control accuracy.

• Uncertainties existing in the system are fully addressed.
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A B S T R A C T

Networking of microgrids has received increasing attentions in recent years, which requires the uncertainty
management associated with variations in the system. In this paper, a two-stage energy management strategy is
developed for networked microgrids under the presence of high renewable resources. It decomposes the mi-
crogrids energy management into two stages to counteract the intra-day stochastic variations of renewable
energy resources, electricity load and electricity prices. In the first stage (hourly time scale), a hierarchical
hybrid control method is employed for networked microgrids, aiming to minimize the system operation cost. The
mean–variance Markowitz theory is employed to assess the risk of operation cost variability due to the presence
of uncertainties. In the second stage (5-min time scale), the components in microgrids are optimally adjusted to
minimize the imbalance cost between day-ahead and real-time markets. Simulation study is conducted on an
uncoordinated microgrids system as well as on the proposed networked system. According to the simulation
results, the proposed method can identify optimal scheduling results, reduce operation costs of risk-aversion, and
mitigate the impact of uncertainties.

1. Introduction

Heightened concerns about energy resource limits, climate change,
as well as increasing energy prices, has led countries to increased in-
tegration of renewable energy sources (RESs) into modern power sys-
tems, primarily in the form of solar photovoltaic panels and wind tur-
bines [1]. A transition from fossil-based and non-renewable fuels to
renewable and sustainable energy is occurring around the world [2]. By
the end of 2017, the global installed renewable capacity has reached
2180 GW, with solar capacity being around 390 GW and wind power
capacity over 500 GW [3] In such a situation, microgrids (MGs), a
cluster of various distributed generators, energy storage systems, loads
and other onsite electric components, are emerging as an effective way

to integrate the RESs in distribution networks and satisfy the end-user
demands [4]. Microgrids have a critical role to play in transforming the
existing power grid to a future smart grid, which usually operate in
grid-connected modes to maximize benefits, and can also operate in
islanded modes for enhancing system reliability in grid outage periods
[5]. Multiple microgrids can be connected to form a networked system.
Compared with the traditional individual microgrid, networked mi-
crogrids possess the capability of decreasing the network operation cost
in grid-connected modes and reducing the amount of load shedding in
islanded modes [6].

Energy management system (EMS) is used for optimally scheduling
power resources and energy storage systems in microgrids to maintain
supply-demand balance [4]. Numerous studies have examined the
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intelligent energy management of networked microgrids, which can be
categorized into centralized EMS, decentralized EMS, and hybrid EMS
based on the architecture. For instance, Olivares et al. present a cen-
tralized EMS for isolated microgrids, which use model predictive con-
trol technique to allow a proper dispatch of the energy storage units
[7]. Wang et al. propose a decentralized energy management system for
the coordinated operation of networked microgrids in a distribution
system, which aim to minimize the operation cost in the grid-connected
mode and maintain a reliable power supply in the island mode [8].
Wang and Mao investigate a hierarchical power scheduling approach to
optimally manage power trading, storage, and distribution in a smart
grid composed of a macrogrid and cooperative microgrids [9]. The
merits and demerits of the three prevailing EMSs have been compared
and summarized in [10].

Alternately, considering the increasing penetration of RESs, new
challenges have been imposed on the scheduling of microgrids. RESs
(i.e. solar and wind power) are intermittent and stochastic, which
highly depend on environmental factors like solar irradiance and wind
speed. Due to the uncertainty of renewable energy resources, un-
certainty management in scheduling of MGs has become an active re-
search area recent years. Commonly adopted methods in the literature
for MGs uncertainty management are robust optimization [11–14] and
stochastic optimization techniques [15,16]. Kuznetsova et al. present a
robust optimization based optimal energy management strategy to
improve system operation performance [11]. In [12], Gupta develops a
robust optimization approach to accommodate wind power uncertainty
and achieve cost minimization in MGs. In [13], a robust optimization
approach is proposed to optimally operate MGs. By collaboratively
scheduling energy storage and direct load control, the uncertain out-
puts of RESs are addressed. By reviewing the literature, it can be found
that most works on MGs scheduling by robust optimization method

focus on single microgrid operation. However, the form of networked
MGs is emerging given its unprecedented benefits, which requires the
optimal operation of MGs with uncertainty management taken into
account. Under this circumstance, Hussain et al. design a robust opti-
mization based scheduling method for multi-microgrids considering
uncertainties in RESs and forecasted electric loads [14].

Stochastic optimization has also been widely used in the planning,
operation, and control of MGs. Liang and Zhuang [15] present a de-
tailed survey about stochastic modeling and optimization in a micro-
grid. In this survey, the key features of MGs are investigated and a
comprehensive review on stochastic modeling and optimization tools
for MGs is provided. In [16], a multi time-scale and multi energy-type
coordinated microgrid scheduling solution is proposed. In the day-
ahead scheduling model, the uncertainties of RESs are represented by
multiple scenarios and the EMS objective is to minimize the microgrid
operation cost. In a real-time dispatch model, the fluctuations of RESs
are smoothed out by cooling loads and electrical energy. The prominent
defects of applying stochastic optimization on MGs uncertainty man-
agement are the high computational requirements when the number of
scenarios increases, as well as only providing probabilistic guarantees
for constraint satisfaction [5]. In contrast, robust optimization is im-
mune against all possible realizations of uncertain data within the un-
certainty sets. However, shortcomings also exist in this method.
Through optimizing the worst-case scenario, robust optimization ap-
proaches could result in over-conservative results in MGs operation
[14].

Review of the literature has identified that some issues remain open
in the scheduling and dispatching of MGs. In [11–13,16], the un-
certainty management is conducted in an individual microgrid without
realizing the emerging trends of networked MGs; and in others, al-
though the uncertainty of RESs are considered in networked MGs, the

Nomenclature

Abbreviations

BESS battery energy storage system
CDG controllable distributed generator
DSO distribution system operator
EMS energy management system
MG microgrid
MGC microgrid community
RES renewable energy sources
SOC state of charge
VaR value-at-risk

Indices

t index of time (t =1, 2, …, T)
i index of microgrid (i =1, 2, …, I)
C index of microgrid community
k index of scenario (k=1, 2, …, ΩK )

̂( • ) index of variables in real-time market

Parameters

aCG/bCG cost coefficients of CDG
aCL/bCL cost coefficients of controllable load
Ct

CG operation cost of CDG
Ct

ES operation cost of BESS
Ct

CL the cost of controllable load
Cit

M exchanged power cost of the ith microgrid
Ct

C M, Cost of exchanged power in MGC
ER

ES rated capacity of BESS

Et
ES stored energy in BESS at time t

ICES investment cost of BESS
LCN BESS total life cycle number
ηES Dis, /ηES Chr, BESS discharging/charging efficiencies

PCG/ PCG lower/upper limits of CDG power output
Pt

L electricity load
Pit

RES forecasted renewable power
P ES Dis, /P ES Chr, upper limits of BESS discharging/charging power

Pi
M/Pi

M lower/upper limits of exchanged power
PExch/ P Exch lower/upper limits of interconnection exchange be-

tween a MGC and distribution network
ρit price of exchanged power at time t
ρt

C price of exchanged power between MGC and the dis-
tribution network

RampCG
Up/RampCG

Up ramping up/down limits of CDG
SOC/SOC lower/upper limits of state of charge
SUCit

CG/SDCit
CG Start-up/shut-down costs of CDG

γES battery lifetime depression coefficient
ς/ς minimum/maximum ratio of controllable load

Variables

Pt
CG CDG power output

P P/t
ES Dis

t
ES Chr, , BESS discharging/charging power

Pt
CL the amount of controllable load

Pit
M exchanged power of the ith microgrid

Pt
C M, exchanged power amount between MGC and the dis-

tribution network
χt

CG commitment status indicator of a CDG
χ χ/t

ES Dis
t
ES Chr, , BESS discharging/charging indicator

χt
SU / χt

SD start-up/shut-down indicator of a CDG
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