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H I G H L I G H T S

• The complexity of electric market models limits their usefulness in risk analysis.

• A reduced-form modeling approach is developed using neural networks.

• The reduced-form model enables the use of modern, simulation-based risk analysis.

• Applications to the analysis of the cash flow risks of generators are explored.
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A B S T R A C T

The experience of the last fifteen years has illustrated dramatically the emergence of new risks facing power
market investors. The volatility of commodity prices, the strategic behavior of competing firms, and regulatory
uncertainty all contribute to a challenging investment and operating environment. Traditionally, utilities and
power-market investors have used large-scale optimizing production-cost models to analyze the cash flows of
power generators. The complexity of these models, particularly when applied on a regional or national scale, is
such that computational costs often prohibit extensive analysis of commodity, regulatory, and structural risks.
This article demonstrates how a reduced-form modeling approach utilizing neural networks can be used to
increase greatly the ability of modelers to use modern simulation-based risk analysis techniques. In particular,
several applications relevant to evaluating the cash flow risks of generators, with applications to hedging, are
presented. Central to the contributions of this paper is our reduction of complex optimizing models to spread-
sheet form, reducing not only their computational complexity, but also their practical user complexity.

1. Introduction

1.1. A need for new tools for a changing world

Since deregulation, investors in the U.S. electric power generation
sector have seen a significant increase in the types and amounts of risk,
and therefore in the need for new risk analysis tools [1]. As the industry
shifted from a world dominated by cost-of-service regulation and cen-
tral planning to one featuring competition and profit-maximization in
many regions, new risks have emerged to confront investors. In the
past, under traditional cost-of-service regulation, power generators had
more flexibility to deal with suboptimal decision making. Today,
however, with profits determined largely by competitive position or
performance-based regulation, a heightened emphasis has been placed
on making better, more informed decisions.

Power-generation owners must also cope with a shift of objectives.
In the world of traditional regulation, the objective was to minimize
aggregate system costs while maintaining reliability; in a competitive
world, the objective is to maximize firm profits, subject to a reliability,
environmental, and market power constraints. As Nanduri and Das [1]
did a decade ago, Li and Trutnevyte [2] stress the need for new tools to
assist with long-term investment planning. For many generators, the
certainty of fixed, long-term contracts for power and fuel has dis-
appeared. Generator owners that were previously concerned primarily
with operational issues, given their fixed operating margins, must now
cope with a world in which their operating margins are at the whim of
extremely volatile commodity prices (such as electricity and natural
gas), the strategic behavior of their competitors, and regulatory un-
certainty.

To power generators, risk management traditionally meant
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managing the rate-setting process and, from an operational perspective,
minimizing risks to reliability. The idea that power generators and
utilities would need to address commodity price, strategic, and reg-
ulatory risks was less emphasized. As a result, utilities typically relied
on production-cost models (PCM) to guide their dispatch and long-term
planning decisions [3]. These optimization models, such as AURORA,
GE-MAPS, PROMOD, and others, are computational models designed to
calculate a system’s production costs, availability, fuel consumption,
and various other factors related to generator operation. They usually
involve modeling not only generation characteristics, but also fuel
supply, economic dispatch, unit commitment, and hydrothermal co-
ordination [4].

Although modeling power-system equilibrium is relatively
straightforward in theory, in practice these problems often possess
considerable complexity. This complexity arises not only from the
computational complexity of tasks such as the security-constrained unit
commitment and network-flow problems [5], but also from the need to
reflect strategic behavior [6–9], regulatory uncertainty [10–12], and
the sheer scale of attempting to replicate entire regions on a unit-by-
unit and day-by-day or hour-by-hour basis.

Even with fast computers or parallelization, these models can often
take minutes to hours to solve (depending on the problem scale).
Denton et al. [13] note that long-term asset valuation requires ex-
tending PCMs well into the future, but that their inability to address
uncertainty is a drawback because a multiyear simulation requires
“compute times on the order of an hour” for a single, well-defined fu-
ture world. Indeed, energy system modeling more broadly often faces
computational constraints. A similar supply chain optimization model
for biomass reported computing requirements exceeding five hours
[14]. Dealing with this complexity involves making tradeoffs. De
Jonghe et al. [15] incorporated operational simplifications and limited
their model’s horizon to one year. Welsch et al. [16], in contrast, in-
corporated long-term planning, but with limited time slices in the form
of monthly resolution. Koltsaklis and Georgiadis [17] and Wierzbowski
et al. [18] incorporated both short- and long-term planning but in-
cluded no uncertainty. As a result, risk analysis modeling has typically
been limited primarily to short-term horizons (six to twelve months) for
computational reasons [19,20], though exceptions exist in some cases
[21]. In addition to the stochastic challenges of long-term system
planning, such long-term horizons typically also require some degree of
“interactivity,” in that the actions of future decision-makers must be
modeled [22].

If generators still existed in the relatively certain, regulated world of
the past, computational effort would be of little consequence. Decision
making often took place on a scale of months and years—mostly for
long-term capacity planning. A handful of “sensitivity”model runs were
often sufficient to represent the expected consequences of future ac-
tions. As uncertainty entered the picture, however, these models have
become increasingly deficient; in many respects, they are tools designed
for a different era.

One hallmark of quantitative risk analysis is the ability to reflect the
probabilistic nature of risk in models as a measure of the uncertainty
faced. For example, rather than assuming that natural gas prices will be
$3/MMbtu in a given period, one may instead wish to model natural
gas prices as emerging from some stochastic process, correlated to
power prices and regional capacity planning decisions. Again, in prin-
ciple, this would appear straightforward: simply run the PCMs for
thousands of iterations, reflecting the multiplicity of possible future
states of the world. In practice, of course, this is generally not feasible
[20]. Applications of stochastic analysis in such models often face limits
on both the quantity and nature of the inputs and outputs and the types
of risk analysis capable of being performed [23,24].

1.2. Using reduced-form models to manage model complexity

PCMs are sufficiently complex that true Monte Carlo simulation

analysis is generally impractical on any meaningful or descriptively-
rich scale. Any single calculation that takes any time at all to compute
renders simulation analysis paralyzed under the number of iterations
required. Ventosa et al. [25] describe a three-part classification of
electric market models into optimization (i.e., solving the production
problem for individual generators), equilibrium (i.e., determining equi-
librium across all market participants), or simulation (i.e., evaluating
the risks to market participants from input uncertainties) because of the
computational difficulties of incorporating all three elements into a
single model. However, a manager’s ability to use such models as de-
cision-making tools is significantly compromised if “desktop” flexibility
and comprehensiveness are impaired. If managers must wait days for
the results of a single simulation analysis or are forced to juggle mul-
tiple models for different analytical purposes, the models cease to be
useful in practice.

The goal of the research described in this paper is to design an
approximation (a “reduced-form model” (RFM) or “surrogate” model)
of a PCM that is accurate, fast, flexible, and only produces the in-
formation needed by the decision makers. To maintain its usefulness as
a management decision-making tool, it is also highly desirable to
maintain the entire model inside of a spreadsheet package that ad-
dresses all three of the applications in Ventosa et al. [25].

Electric power generation is not the only field in which reduced-
form models are used. Mendelsohn et al. [26] used RFMs to incorporate
climate impacts in economic equilibrium models. Lutz et al. [27] used
RFMs to model population dynamics, noting the difficulty of assessing
the right level of detail to incorporate in construction of the RFM.
Zheng et al. [28] used RFMs to introduce confidence intervals to elec-
tricity price forecasts. Areas such as environmental planning [29] and
even credit risk modeling [30,31] have all made extensive use of re-
duced-form modeling techniques—in most cases to facilitate the use of
simulation analysis. The use of a RFM to facilitate simulation analysis of
a large supply chain model illustrated their usefulness in tackling high
dimensional problems [32]. Recent examples of their use include An
et al. [33], who developed an RFM for groundwater management. Their
application was notable for its use of a stratified sampling technique in
the model development process. Both Prada et al. [34] and Edwards
et al. [35] used RFMs to “speed up” the simulation of optimizing
building design models, demonstrating considerable success within that
application.

Our paper makes several novel contributions. First, we build on the
integration of variance reduction techniques in [33] by incorporating a
scenario generation simulation prior to estimation of the RFM. The
purpose of this “pre-simulation” step is to enhance the training process
by focusing not just on efficiently-selected inputs, but also on the in-
corporation of future decision-making agents in the construction of
plausible scenarios. Second, our extraction of the RFM into a spread-
sheet facilitates detailed simulation analysis at the desktop-computing
level. Third, the reduction of the PCM into a spreadsheet model allows
management-level interconnectivity with traditional investment ana-
lysis spreadsheet tools, such as discounted cash flow models and mean-
variance portfolio analysis, as well as numerous other analytical en-
deavors. This end-to-end ability to evaluate investment risks by mod-
eling both macro- (system) andmicro- (generator) level uncertainty in a
directly coordinated fashion within a spreadsheet framework is, we
believe, unique in the electric power literature. We believe there is
considerable value in removing as much distance as possible between
modeling and management.

The next section provides an overview of the four steps of the
modeling process developed. Section 3 outlines the component of the
modeling process used to bound the range of future worlds that the
model can explore and discusses the issues involved in a practical ex-
ample that is continued throughout the remainder of this paper. Section
4 discusses the role of traditional PCMs in the modeling process and
their outputs. Section 5 outlines the role of neural networks in the re-
duced-form modeling process. Section 6 describes the policy simulation
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