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H I G H L I G H T S

• Multi-types of charging facilities are
regarded to be mixedly installed in
EVCSs.

• An optimization model is proposed to
determine the allocation schemes of
EVCSs.

• A two-step equivalence is proposed to
process the scenario-based constraints.

• An exact SOCP relaxation is adopted
to make the optimization model easily
solved.
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A B S T R A C T

Along with the rapid development of electric vehicle (EV) charging technologies, many new types of charging
facilities have been utilized in electric vehicle charging stations (EVCSs). Charging facilities with different rated
charging power can satisfy the charging demands from diverse EV owners, and simultaneously impact the spatial
and temporal distribution of EV charging demands, which in consequence challenges the rationality and
economy of EVCS allocation schemes. Based on this background, this paper indicates that EVCSs should be
regarded to comprise multi-types of charging facilities during the planning stage, and a new optimization model
is proposed for the target of minimizing the annualized social cost of whole EV charging system. To process the
complexity of the optimization model, a two-step equivalence is proposed and applied. After the equivalence and
some exact relaxation, the proposed optimization model has been transformed into the type of mixed integer
second-order cone programming (MISOCP), which can be efficiently solved by appropriate mathematical
methods. To demonstrate the feasibility and effectiveness of the proposed approach, a practical urban area fed
by a 31-bus distribution system in China has been used as the test system and the numerical results are presented
and analyzed.

1. Introduction

AS a great substitute for traditional fossil fuel-powered transporta-
tion, electric vehicles (EVs) featured with low greenhouse gas emission

and high energy utilization efficiency have attracted rapidly increased
attention during the past decade [1,2]. Based on this background, EV
advocates (e.g. governments, automobile companies and energy cor-
porations) have made great efforts to promote the popularization of
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EVs. It is anticipated that EV penetration will meet a swift growth in the
foreseeable future [3]. However, unlike the expeditious refueling of
traditional fossil fuel-powered vehicles, EV recharging activities require
appropriate charging facilities, as well as certain length of charging
time [4]. These inconveniences are world-wide pain points of the
booming EV industry and in consequence bring negative impacts on
EVs’ social acceptance [5,6]. To improve EV charging efficiency and
relieve the described pain points, the optimal planning of EVCSs is
becoming an extremely important topic. An optimal allocation scheme
of EVCSs can satisfy the charging demands from diverse EV owners with
minimum social costs, and thereby promote the development of EV
industry.

The optimal planning of EVCSs has been investigated in the litera-
tures from different perspectives. Firstly, viewed from the modeling of
EV charging demands, various approaches have been proposed and
utilized. In [7] and [8], EV charging demands are assumed to be con-
stants, which is a simple and convenient way except for the sacrifice of
accuracy. In [9], voltage fluctuations in power systems have been taken
into consideration and EV charging demands are described to be vol-
tage-dependent. For the sake of considering the influence of traffic flow,
origin-destination (OD) analysis has been introduced to model the
transportation behaviors of EV users in [10,11] and thereby the dis-
tributions of EV charging demands are derived. In [12] and [13], EV
charging actions are divided into two types: destination charging and
urgent charging. The specific charging demands corresponding to each
type of charging action are forecasted according to the historical data of
EV parking behaviors and the forecasting approach is essentially a kind
of Monte Carlo simulation method [14]. Secondly, in terms of the
planning scenarios, various factors and targets have been considered in

the previous researches. In [15], the optimal number, location and
capacity of each EVCS are determined to satisfy the growth of EV pe-
netration with the target of maximizing the profit of electrical dis-
tribution companies. In [16], peak/off-peak electricity price and ade-
quate incentives for EV owners are considered to make the planning
scenario more practical. In [17], the concept of vehicle-to-grid (V2G) is
introduced to the planning of EVCSs, which brings a significant re-
duction in the operational costs of the distribution network. Further-
more, the optimization model is embedded with time-of-use demand
response programs in [18], where the benefits of EVs’ appropriate
charging/discharging scheduling are exhibited in a comprehensive
manner. In [19], load profile templates for different seasons, as well as
workdays/weekends are integrated in the optimization model, and
EVCSs are jointly planned with distribution network topology. In [20],
the optimal planning of EVCSs is considered as a multi-objective pro-
blem, during which the overall annual costs of investment and energy
losses are minimized simultaneously with the maximization of annual
traffic flow captured by EVCSs. Thirdly, reviewed from the aspect of
solution algorithms, the frequently used algorithms in existing studies
can be divided into two types: heuristic algorithms and mathematical
algorithms. On the whole, heuristic algorithms are relatively more
popular than mathematical algorithms, because the planning problems
of EVCSs are always embedded with the complicated driving and
parking behaviors of EV owners, which make the optimization models
extremely complex and only few of them can be successfully solved by
mathematical algorithms. As the representatives of heuristic algo-
rithms, genetic algorithm (GA) [21,22], particle swarm optimization
(PSO) [23], GA-PSO hybrid algorithm [24], differential evolution (DE)
[25] and chemical reaction optimization (CRO) [26] are frequently

Nomenclature

Sets and indices

k Index of EVs
n Index of land blocks
t Index of time segments
s Index of seasons
i/j Index of buses
u(i)/u(j) Set of downstream buses connected with bus i/j
v(j) Set of upstream buses connected with bus j
ΩN Set of buses in the distribution system
ΩL Set of branches in the distribution system
ΩC Set of candidate buses for EVCSs

Parameters

PSCF/NCF/FCF Rated charging power of SCF/NCF/FCF (kW)
Capk Battery capacity of EV numbered k (kWh)
SOCk State of charge of EV numbered k
Tk

dur Parking duration of EV numbered k (h)
Nb Quantity of land blocks in the certain area
Nbus Quantity of buses in the distribution system
cSCF NCF FCF

I
/ / Investment cost for each SCF/NCF/FCF ($)

d Discount rate
yCF The economic life of charging facility (year)
cR Per-unit grid reinforcement cost ($/kW)
cSCF NCF FCF

O M
/ /

& Annual O&M cost for each SCF/NCF/FCF ($)
cL Per-unit cost of network losses ($/kWh)
Rij/Xij Resistance/reactance of branch from i to j (Ω)
Δt Span of each time segment (h)
Umin/Umax Permitted minimum/maximum limit of voltage magni-

tude (kV)
Iij,max Upper limit of branch current from i to j (A)

d(i, j) Distance between bus i and bus j (km)
dlim Permitted maximum limit of EV’s extra travel distance for

charging (km)

Variables

PEVk Charging demand of EV numbered k (kW)
CI Annualized investment cost of EVCSs ($)
CR Annualized grid reinforcement cost ($)
CO&M Annual O&M cost of EVCSs ($)
CL Annual network losses cost ($)

− −C C/s t
L W

s t
L WD

, , Network losses cost in time segment t of season s re-
lated with workdays/weekends ($)

Rd Auxiliary variable in annualization
Ni

SCF NCF FCF/ / Integer variable that indicates the installation number
of SCF/NCF/FCF at bus i

Cs t
L
, Unified representation of −Cs t

L W
, and −Cs t

L WD
,

Iij Branch current from i to j at the designated time segment
(A)

Pij/Qij Active/reactive power in branch from i to j at the desig-
nated time segment (kW/kVar)

Ui Voltage magnitude at bus i under the designated time
segment (kV)

Nij
SCF NCF FCF/ / Quantity of EVs whose destinations are bus i but re-

charge at bus j via SCF/NCF/FCF
P Q/j

Load
j
Load Active/reactive load demand at bus j under the desig-

nated time segment (kW/kVar)
Pj

EV EV charging power at bus j under the designated time
segment (kW)

Ni
ar SCF NCF FCF/ / Quantity of EVs whose destinations are bus i and

prefer charging via SCF/NCF/FCF
U I,i ij Auxiliary variable in SOCP relaxation
Δij Deviation variable used in exactness verification of SOCP

relaxation

L. Luo et al. Applied Energy 226 (2018) 1087–1099

1088



Download English Version:

https://daneshyari.com/en/article/6679873

Download Persian Version:

https://daneshyari.com/article/6679873

Daneshyari.com

https://daneshyari.com/en/article/6679873
https://daneshyari.com/article/6679873
https://daneshyari.com

