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a b s t r a c t

The stability of a porous Benard layer of Brinkman fluid under local thermal non-equilibrium conditions
and obeying the Cattaneo flux law in the solid is studied. The preference for stationary and overstable
linear motions is examined in the whole parameter space of the problem. It is shown that overstability
occupies a region within a branch of a rectangular hyperbola-like curve in the first quadrant of the ðbt;HÞ
plane, where bt;H are the Straughan and thermal inter-phase interaction parameters, respectively, so that
overstability persists evenwhen H/∞. The Brinkman effect tends to stabilize the layer but enhances the
region of preference of overstability in the parameter space. The influence of the other parameters on the
critical mode is also identified. The nonlinear development of the amplitude A of the linear wave motions
of both stationary and overstable modes is found to be governed by a first order evolution equation. The
analysis of the evolution equation shows that the layer can exhibit supercritical instability for both
stationary and overstable modes and subcritical instability and stability for the stationary mode
depending on the relative magnitudes of the parameters of the problem. The Brinkman effect is found to
reduce the amplitude of the supercritical instability while the porosity modified ratio of thermal con-
ductivities and the ratio of thermal diffusivities tend to promote subcritical instabilities. The implication
of these results on the nonlinear global stability of the model is discussed.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The flow of fluids in porous media under local thermal non-
equilibrium conditions has recently received considerable atten-
tion because of its relevance to many applications ranging from
modelling of underground CO2 sequestration [1] to tube re-
frigerators [2] to nanofluid flows [3] and many other applications.
The reader is referred to the introduction of the book by Straughan
[4] for more types of applications and to the study by Virto et al. [5]
which gives several causes of local thermal non-equilibrium.

The state of local thermal non-equilibrium is defined as the state
in which the solid has a temperature, Ts, different from that, Tf, of
the fluid. This demands an energy equation for the solid as well as
one for the fluid. One direct approach is to use an equation for the
solid that is similar to that for the fluid but with different medium
properties [6e13]. Another approach is to use Cattaneo effects on
the solid [14]. Cattaneo, realizing that the classical relationship
between the heat flux and the temperature gradient leading to the
heat equation has a solution that has an infinite wave speed,

proposed a modification of the relationship between the heat flux
and temperature to produce a solution that possesses a finite wave
speed [4, p.11]. The finite speed introduced by the Cattaneo effect is
now known as the second sound, while the classical diffusive wave
is referred to as the first sound [14,15].

The problem of convection in a porous Benard layer in local
thermal non-equilibrium first introduced by Horton and Rogers
[16] and Lapwood [17] has recently received considerable attention
[18] because it provides a simple model that allows a detailed
analysis of the roles of the different parameters of the problem and
hence provides good understanding of the basic properties of
porous media in local thermal non-equilibrium. Banu and Rees [6]
were the first to study the convective instability of a porous layer in
local thermal non-equilibrium. They used the equations stated by
Nield and Bejan [18] in which the fluid and solid have separate
energy equations governing their different temperatures. Both
equations use Fourier heat flux law. The two equations are coupled
by a thermal inter-phase interaction parameter, H, which is a
measure of the heat transfer between solid and fluid. Adopting the
steady Darcy equation without Brinkman and Forchheimer effects,
they found that the layer in local thermal non-equilibrium can be
unstable to stationary convective motions only. The energyE-mail address: ieltayeb@squ.edu.om.
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required for exciting the motions, as measured by the Rayleigh
number, depends strongly on the thermal inter-phase interaction
parameter, H, with small values of the parameter resembling strong
local non-equilibrium while large values of the parameter give re-
sults similar to those of the layer in local thermal equilibrium.

Straughan and Franchi [19] were the first to introduce Cattaneo
effects to the study of convective instability of a porous Benard
layer in local thermal equilibrium. They found that the presence of
Cattaneo effects introduces convective instabilities when the top
plane is hotter than the lower, in which case the layer is thermally
stably stratified, in addition to the classical instability present when
the bottom plane is hotter. Recently, Straughan [20] extended that
study to a layer in local thermal non-equilibrium and identified a
global nonlinear criterion for the stability of the layer using an
energy method. The stability problem depends on a number of
dimensionless parameters: the ratio of the thermal diffusivity of
the fluid to that of the solid, B, the porosity modified ratio of the
thermal conductivities of the fluid and solid, g, the thermal inter-
phase interaction parameter, H, the Straughan parameter, bt,
which is the ratio of the relaxation time to the thermal diffusion
time of the fluid, and the Rayleigh number, Ra, which measures the
thermal energy provided by the applied adverse temperature
gradient across the layer (see Equation (2.16) below). The global
condition of stability was found to be independent of the param-
eters B;g;H; bt. Straughan also examined the linear stability of the
layer to discover that the Cattaneo effect introduces overstable
motions to the layer provided the parameter, H, is not too small. He
examined the dependence of the Rayleigh number necessary for
instability to find that it always lies above that required for the
nonlinear global stability criterion.

The motivation for the present study is threefold. First we
investigate further the roles played by the parameters B;g;H; bt (see
Equation (2.16)) on the linear stability. The study by Straughan [20]
showed that the introduction of second sound by the Cattaneo ef-
fect introduces overstable modes, which are preferred provided
that the interaction inter-phase parameter, H, and the parameter bt
are large enough. However, the functional relationship between H
and bt on the boundary between regions of preference of stationary
and overstable modes has not been examined. We will identify the
boundary between the overstable and stationary modes in the
ðbt;HÞ plane and discuss its dependence on the other parameters of
the problem in Section 3 below. Furthermore, the study [6] by Banu
and Rees showed that when H is very large, the stability of the layer
becomes identical to that of a layer in thermal equilibrium. The
study [20] did not address the limit of very large H on the stability
of the layer in the presence of the Cattaneo effect. We investigate
this limit in Section 3 below and obtain asymptotic results for the
preferred mode at large values of H.

The second motivation is the inclusion of the Brinkman effect
(or effective viscosity) of the fluid to the Cattaneo model. A number
of studies have considered the convective instability of a porous
medium under the Brinkman effect in the fluid [21,22,23]. However,
they all included the inertia term in the Darcy equation and
consequently their overstable motions are influenced by the iner-
tial oscillations. Here we exclude the inertia term in the Darcy
equation so that overstable motions are due to second sound only.
The influence of the Brinkman effect on the stability of the sta-
tionary and overstable second soundmodes as well as its role in the
choice of preference of the two modes is investigated. The results
are summarized in regime diagrams and discussed in Section 3.

The third motivation is to get some insight into whether the
nonlinear global condition for stability derived in Ref. [20] using an
energy method is necessary as well as sufficient for stability. The
study [20] showed that the energy required, as measured by the
Rayleigh number, Ra (see Equation (2.16) below), for the linear

stability of the layer exceeds that of the global stability for non-zero
values of H. This suggests that subcritical instabilities are likely to
occur. Also the condition for nonlinear global stability is indepen-
dent of the parameters B;g; bt, and it is of interest to examine
whether the occurrence of subcritical instabilities, if they occur,
depends on the specific values of the parameters. We also include
in this study the influence of the Brinkman effect on the occurrence
of subcritical instabilities.

In Section 4 we use a formal weakly nonlinear analysis to show
that the amplitude of the linear theory is governed by a first order
evolution equation over long time and distance. A detailed analysis
is made of the evolution equation with regard to the possible ex-
istence of subcritical and supercritical instabilities. In Section 5, we
mention some concluding remarks.

2. Formulation

We consider a horizontal layer of saturated porous medium in
local thermal non-equilibrium contained between two stress free
horizontal planes a distance,d, apart. The basic equations are the
steady DarcyeBrinkman equation, the continuity equation and the
NieldeBejan equations for the temperatures of the fluid and solid
when the heat flux of the solid obeys the Cattaneo effect while that
of the fluid conforms to the Fourier heat flux law:

0 ¼ �Vpþ rf g� mf

K
uþ bmfV

2u; (2.1)

V$u ¼ 0; (2.2)

�
1� εp

�ðrcÞsvTsvt
¼ ��1� εp

�
V$Q � h

�
Ts � Tf

�
; (2.3)

ts
vQ
vt

¼ �Q � ksVTs; (2.4)

ðrcÞf
�
εp
vTf
vt

þ
�
u$VTf

��
¼ εpkfV

2Tf þ h
�
Ts � Tf

�
; (2.5)

Here p,u,Q,T,r are, respectively, the pressure, velocity, flux in the
solid, temperature, density and g,K;mf ; bmf ; εp; c; k;h; ts are the ac-
celeration due to gravity, permeability, fluid dynamic viscosity,
effective viscosity, porosity, specific heat at constant pressure,
thermal conductivity, thermal inter-phase interaction coefficient
and the relaxation time of the solid, respectively. We have adopted
the Boussinesq approximation here so that the density is assumed
constant except when it occurs in conjunction with gravity. Also,
we shall always use the subscripts f,s to refer to fluid and solid,
respectively.

The neglect of the time dependent term in the DarcyeBrinkman
equation filters out the inertial modes of the system so that the
propagating waves discussed below are second sound waves.

We wish to examine the stability of a stationary basic state in
which the two planes are maintained at constant temperatures
with the lower plane possessing a higher temperature, TL, than that,
TU, of the upper plane. We define a Cartesian system of coordinates
in which the origin O lies half-way between the two planes, Oz is
directed vertically upwards and Ox,Oy are horizontal. The basic
state variables, denoted by a ‘tilde’, are

~u ¼ 0; ~Tf ¼ ~Ts ¼ �bzþ TL; ~Q ¼ ð0;0; ksbÞ;
~rf ¼ r0

h
1� at

�
~Tf � T0

�i
;

(2.6)
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