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H I G H L I G H T S

• A novel approach to data-driven predictive control (DPC) using Random Forests.

• Accuracy, scalability & robustness of the algorithm are verified with three studies.

• Case Study I: DPC shows comparable performance to a physics-based MPC controller.

• Case Study II: DPC provides Demand Response curtailment for an EnergyPlus building.

• Case Study III: DPC provides up to 50% energy savings in a real off-grid house.

A R T I C L E I N F O

Keywords:
Building control
Energy optimization
Demand response
Machine learning
Random forests
Receding horizon control

A B S T R A C T

Model Predictive Control (MPC) is a model-based technique widely and successfully used over the past years to
improve control systems performance. A key factor prohibiting the widespread adoption of MPC for complex
systems such as buildings is related to the difficulties (cost, time and effort) associated with the identification of a
predictive model of a building. To overcome this problem, we introduce a novel idea for predictive control based
on historical building data leveraging machine learning algorithms like regression trees and random forests. We
call this approach Data-driven model Predictive Control (DPC), and we apply it to three different case studies to
demonstrate its performance, scalability and robustness. In the first case study we consider a benchmark MPC
controller using a bilinear building model, then we apply DPC to a data-set simulated from such bilinear model
and derive a controller based only on the data. Our results demonstrate that DPC can provide comparable
performance with respect to MPC applied to a perfectly known mathematical model. In the second case study we
apply DPC to a 6 story 22 zone building model in EnergyPlus, for which model-based control is not economical
and practical due to extreme complexity, and address a Demand Response problem. Our results demonstrate
scalability and efficiency of DPC showing that DPC provides the desired power curtailment with an average error
of 3%. In the third case study we implement and test DPC on real data from an off-grid house located in L’Aquila,
Italy. We compare the total amount of energy saved with respect to the classical bang-bang controller, showing
that we can perform an energy saving up to 49.2%. Our results demonstrate robustness of our method to un-
certainties both in real data acquisition and weather forecast.

1. Introduction

Control-oriented models of energy system’s dynamics and energy
consumption, are needed for understanding and improving the overall
energy efficiency and operating costs of a building. With a reasonably

accurate forecast of future weather and building operating conditions,
dynamical models can be used to predict the energy needs of the
building over a prediction horizon, and use them to determine optimal
control actions to save energy and guarantee thermal comfort, as is the
case with Model Predictive Control (MPC) [1]. However, a major
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challenge with MPC is in (accurately) modeling the dynamics of the
underlying physical system. The task is much more complicated and
time consuming in the case of a large buildings and often times, it can
be even more complex and involved than the controller design itself.
After several years of work on using first principles based models for
peak power reduction, energy optimization and thermal comfort for
buildings, multiple authors [1,2] have concluded that the biggest
hurdle to mass adoption of MPC in intelligent building control is the
cost, time and effort required to capture accurate dynamical models of
the buildings. The user expertise, time, and associated sensor costs re-
quired to develop a model of a single building is very high. Thus, the
payback period for the upfront hardware and software installation is
expected to be too high, making MPC an uneconomical choice for en-
ergy management. This is probably the main reason why rule-based
control strategy have been widely used so far. Indeed, there are several
reasons why physics-based modeling is hard for complex systems like
buildings:

1. Model capture – a building modeling domain expert typically uses
a software tool to create a model to reproduce the geometry of a
building from the building design and equipment layout plans, and
add detailed information about material properties, equipment and
operational schedules. However, there is always a gap between the
modeled and the real building, and the domain expert must then
manually tune the model to match the measured data [3]. Moreover,
the modeling process also varies from building to building with the
construction and types of installed equipment. Another major
downside with physics-based modeling is that enough data is not
easily available, so guesses for parameter values have to be made,
which also requires expert know-how.

2. Change in model properties over time – even if the model is
identified once via an expensive route as in [1], as the model
changes with time, the system identification must be repeated to
update the model. Thus, model adaptability or adaptive control is
desirable for such systems.

3. Model heterogeneity further prohibits the use of model-based
control. For example, unlike the automobile or the aircraft industry,
each building is designed and used in a different way. Therefore, this
modeling process must be repeated for every new building.

In Section 2 we will present a detailed technical example to better
illustrate how data-driven approaches can address the above issues and
thus reduce the cost of modeling buildings. In practice, due to afore-
mentioned reasons, the control strategies in such systems are often
limited to fixed, sometimes ad-hoc, rules that are based on best prac-
tices. The alternative is to use black-box, or completely data-driven,
modeling approaches, to obtain a realization of the system’s input-
output behavior. The primary advantage of using data-driven methods
is that it has the potential to eliminate the time and effort required to
build white and grey box building models. Listening to real data, from
existing systems and interfaces, is far cheaper than unleashing hoards of
on-site engineers to physically measure and model the building. Im-
proved building technology and better sensing is fundamentally re-
defining the opportunities around smart buildings. Unprecedented
amounts of data from millions of smart meters and thermostats installed
in recent years has opened the door for systems engineers and data
scientists to analyze and use the insights that data can provide, about
the dynamics and power consumption patterns of these systems.

The key question now is: can we employ data-driven techniques to
reduce the cost of modeling, and still exploit the benefits that MPC has to
offer? We therefore look for automatic data-driven approaches for
control, that are also adaptive, scalable and interpretable. We solve this
problem by bridging Machine Learning and Predictive Control. In this
paper, we present a method based on Random Forests which uses his-
torical data for receding horizon control. We begin with a discussion on
the related literature and novelty of our contribution.

1.1. Related work

A vast literature exists in building energy applications that deals
with Demand Response, peak power reduction, energy saving, thermal
comfort, and related topics. Among them, we selected the ones that we
believe are more related to our work.

All these approaches can be classified based on two characteristics:

1. the type of system model:

• model-based, such as “white-box” and “grey-box” approaches:
[9,6,10,15,7,11,12,8,27,14];

• data-based, i.e. “black-box” approaches, mainly done using
Neural Networks: [16–20,14,15];

• simulation tool-based, such as EnergyPlus [28] and TRNSYS [29]:
[4,5];

2. the purpose these models are created for:

• only model identification: [16–18,6,15,7,8,19,14,20];

• model identification and control, mainly Predictive Control:
[9,10,4,11–13].

These references are summarized in Table 1 highlighting the key
differences. We also emphasize the case studies the results are applied
to, and whether the authors used experimental data to simulate their
algorithms. Only in three cases the algorithms are tested on real systems
(see Table 1: RI – Real Implementation). We observe that, except for the
last six cases [21–26], which we discuss in detail, either model-based
approaches or only tools are considered with/without control, or data-
driven modeling approaches are considered only without control. The
last six papers of Table 1 are more related to the methodology presented
in this paper, since they address both data-driven modeling and control.
In particular, the authors in [21] proposed a predictive control strategy
based on Neural Networks, for boilers control in buildings, to decide the
optimal time to switch-on the plant to guarantee energy savings and
thermal comfort. However, the approach is not easily scalable to dif-
ferent types of plants and does not use optimization in the closed-loop

Table 1
References ordered considering: case study they are applied to; whether they
use experimental data, other than simulated data, and if they do real im-
plementation (RI), i.e. implement the methodologies on real systems; if they use
simulative tools; the type of the model considered, i.e. Model-Based or Data-
Driven or both; if the models are used for control.

Ref. Case study Exp. Tool MB/DD Control

[4] Commercial Building Yes E+ None Yes
[5] Commercial building Yes E+ None Yes
[6] Commercial building Yes E+ MB No
[7] 2 office buildings and Yes None MB No

1 residential building
[8] 2 commercial buildings n/a E+ MB No
[9] Residential area No None MB Yes
[10] 2 residential buildings Yes E+ MB Yes
[11] 3 residential buildings No E+ MB Yes
[12] 6 commercial buildings Yes E+ MB Yes
[13] Residential building Yes None MB Yes
[14] Commercial building No E+ MB-DD No
[15] 2 commercial buildings Yes E+ MB-DD No
[16] Office building Yes None DD No
[17] Office building Yes E+ DD No
[18] Residential house Yes TRANSYS DD No
[19] Residential building Yes None DD No
[20] Office building No E+ DD No
[21] Commercial building Yes+RI None DD Yes
[22] Living lab (1 room) Yes+RI None DD Yes
[23] Commercial building Yes+RI None DD Yes
[24] Residential house Yes None DD Yes
[25] 9 commercial buildings No E+ DD Yes
[26] Commercial building No E+ DD Yes
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