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H I G H L I G H T S

• Filtering-based data assimilation method is developed to perform monitoring design.

• Machine learning is used to reduce computational cost of data assimilation process.

• Uncertainty reduction is chosen as the metric to quantify the VOI of monitoring data.
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A B S T R A C T

Monitoring is a crucial aspect of geologic carbon dioxide (CO2) sequestration risk management. Effective
monitoring is critical to ensure CO2 is safely and permanently stored throughout the life-cycle of a geologic CO2

sequestration project. Effective monitoring involves deciding: (i) where is the optimal location to place the
monitoring well(s), and (ii) what type of data (pressure, temperature, CO2 saturation, etc.) should be measured
taking into consideration the uncertainties at geologic sequestration sites. We have developed a filtering-based
data assimilation procedure to design effective monitoring approaches. To reduce the computational cost of the
filtering-based data assimilation process, a machine-learning algorithm: Multivariate Adaptive Regression
Splines is used to derive computationally efficient reduced order models from results of full-physics numerical
simulations of CO2 injection in saline aquifer and subsequent multi-phase fluid flow. We use example scenarios
of CO2 leakage through legacy wellbore and demonstrate a monitoring strategy can be selected with the aim of
reducing uncertainty in metrics related to CO2 leakage. We demonstrate the proposed framework with two
synthetic examples: a simple validation case and a more complicated case including multiple monitoring wells.
The examples demonstrate that the proposed approach can be effective in developing monitoring approaches
that take into consideration uncertainties.

1. Introduction

Geologic CO2 sequestration (GCS) is being considered as an im-
portant technology to reduce anthropogenic greenhouse gas emissions
to the atmosphere [1–9]. Many potential reservoirs have been proposed
to store anthropogenic CO2 emissions, such as depleted oil or gas re-
servoirs, coal beds, deep oceans and deep saline formations [10–13].
The isolation of CO2 from the environment is imperative for a GCS
project not only for the project to successfully store CO2, but also due to
the fact that CO2 leakage is a threat to the environment, the ground-
water resources and human health [14–16]. CO2 leakage may occur
through improperly plugged and abandoned wellbores or through
natural fractures or faults [1,17–19]. Given that depleted oil or gas
reservoirs with significant numbers of abandoned wellbores are

attractive locations for GCS [10,20–27], potential leakage through
abandoned wellbores becomes a primary concern.

To ensure that large-scale GCS is safe and effective, a risk management
strategy is generally used to minimize and mitigate risks during CO2 in-
jection and post-injection periods of a storage site [28–30]. Monitoring is an
essential aspect of GCS risk management. To effectively monitor for CO2

leakage, several monitoring technologies have been developed, including
near-surface measurements of soil CO2 flux and tracer [31,32], pressure
monitoring [33–35], shallow groundwater chemistry monitoring [36,37],
and micro-seismic and cross-well seismic survey [32,38]. A few studies have
been conducted to evaluate the performance of different monitoring stra-
tegies or perform monitoring optimization for CO2 storage sites. Next, we
provide a discussion of some of the most relevant work in order to put the
methodology introduced in this paper in context.
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Yang et al. [39] provided a probabilistic method for predicting the
performance of different monitoring networks at GCS sites. The objec-
tive of their method is to estimate the probability that a monitoring
network will detect CO2 leakage. Yang et al. [40] developed a risk-
based monitoring assessment methodology, which was an extended
work of Yang et al. [39], to incorporate background data for monitoring
design. In this method, the detection probability defined as the prob-
ability that a measured signal will be above the preselected threshold at
the monitoring location is first calculated, and then the detection
probability is used to estimate the monitoring well density and response
time for both known and unknown wellbore leakage locations.

Seto and McRae [41] presented a model-based framework for in-
tegrated monitoring design that can provide a quantitative under-
standing of the trade-offs between operational costs and risks in po-
tential monitoring strategies. In addition, the challenges, risks and
design considerations of large scale CO2 storage were comprehensively
reviewed and discussed in their work. In the work of Seto and McRae
[42], a method for CO2 detection based on a Bayesian model selection
framework was introduced and applied to distinguish whether detected
CO2 is from a leak or from background fluctuations. The limits of dif-
ferent monitoring technologies, the challenges of leak detection and
what are acceptable rates of leakage were thoroughly investigated in
their research.

Sun et al. [43] proposed an approach to optimize monitoring net-
works under geological uncertainty. A binary integer programming
problem (BIPP) formulated in their work was demonstrated for effec-
tively selecting optimal monitoring locations in both homogeneous and
heterogeneous formations. However, the proposed method requires
running a forward full-scale model many times for different design
options, which makes the BIPP computationally demanding. Sun et al.
[43] suggested that a reduced order model or surrogate model can be
used to speed up the BIPP optimization process. Cameron [44] de-
monstrated an approach to optimize sensor locations for CO2 plume
monitoring at a GCS site under geological uncertainty by minimizing
the expected prediction error of the CO2 plume size.

Dai et al. [45] proposed a data-worth analysis approach using
probabilistic collocation based Kalman Filter (PCKF) to optimize the
surveillance operation in a GCS project. In this approach, surrogate

models are developed using polynomial chaos expansion to replace the
original flow models. Thereafter, the expected variance reduction of
field cumulative CO2 leakage is assessed via data-worth analysis. An
optimal monitoring operation scheme is selected by comparing the
value of data-worth for different monitoring strategies. Dai et al. [46]
applied the data-worth analysis and PCKF based approach to quantify
the uncertainty reduction associated with the characterization of a
migrating contaminant plume for different monitoring networks in
groundwater systems.

Chen et al. [47] proposed an approach based on the Markov chain
Monte Carlo (MCMC) method and reduced order models (ROMs) to
quantify the uncertainty reduction of different pilot designs in an oil
field. Note that a pilot refers to small-scale test and data collection
operations prior to a full field development. In the proposed method,
multiple realizations of monitoring data from a pilot test are generated,
and probabilistic history matching (data assimilation) based on an
MCMC method is performed for each data realization to obtain the
corresponding posterior distribution. Though the MCMC based history
matching is accomplished with the help of ROMs, the computational
demand is still high due to the fact that for each data realization, MCMC
often takes hundreds of thousands of runs to converge [48–50]. As
mentioned in the work of Chen et al. [47], one limitation of their
proposed framework is that with the increase of the uncertain model
parameters, it would be difficult for the Markov chain to converge to
the target distribution.

In this work, we build off the previously mentioned monitoring
design algorithms to capture full physics simulations in a computa-
tionally efficient manner by using reduced order models and determine
the optimal monitoring design for GCS sites based on many potential
leakage scenarios that could occur. To quantify the uncertainty reduc-
tion, instead of using an MCMC method as in the work of Chen et al.
[47], we apply a filtering based data assimilation method [51] in this
study, which overcomes the convergence issue inherent in the MCMC
method. In addition, a popular machine learning technique, Multi-
variate Adaptive Regression Splines (MARS) [52], is used to construct
the ROMs or proxy models to reduce the computational cost when the
filtering based data assimilation method is applied.

Nomenclature

Symbols

di ith individual data point that would be obtained if the
monitoring design were implemented

∼d j jth data vector corresponding to each ∼m j

̂d k kth data vector corresponding to each mk

D data that would be measured for a particular monitoring
program

D j jth realization of D
e j jth realization of the vector of measurement errors
Ed expectation with respect to all realizations of D
ld number of data realizations
lmc number of Monte Carlo samples
m uncertain input parameter
∼m j jth model realization generated from prior probability

density function of m
mk kth Monte Carlo sample
Mc cumulative CO2 leakage
nd number of data points in the data vector D
O m( ) ROM vector for data
P M( )c prior probability density function of Mc
P M D( | )c

j posterior probability density function of Mc

P10 10th percentile
P90 90th percentile
Pacc acceptance probability
U amount of uncertainty
UR uncertainty reduction
τ threshold for maximum absolute error

Acronyms

AZMI above zone monitoring intervals
BIPP binary integer programming problem
EnKF ensemble Kalman Filter
ES-MDA ensemble smoother with multiple data assimilation
FEHM Finite Element Heat and Mass transfer
GCS Geologic Carbon Sequestration
LHS Latin Hypercube Sampling
MAE maximum absolute error
MARS Multivariate Adaptive Regression Splines
MCMC Markov chain Monte Carlo
PCKF probabilistic collocation based Kalman Filter
PDF probability density function
ROMS reduced-order-models
VOI value of information
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