ELSEVIER

Contents lists available at ScienceDirect

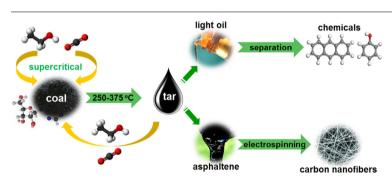
Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Mild degradation of Powder River Basin sub-bituminous coal in environmentally benign supercritical CO₂-ethanol system to produce valuable high-yield liquid tar

Fang-Jing Liu^{a,b}, Khaled A.M. Gasem^a, Mingchen Tang^a, Alexander Goroncy^c, Xin He^a, Zaixing Huang^a, Kaidi Sun^a, Maohong Fan^{a,*}

- ^a Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
- b Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China
- ^c Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA


HIGHLIGHTS

- High yield liquid tar was produced from PRBSBC coal by degradation in SCCO₂-ethanol.
- The synergistic effect between ethanol and SCCO₂ can promote the liquid tar yield
- Phenols and esters are the dominant small-molecular chemicals in the liquid tar.
- The liquid tar can be separated into light oil and asphaltene fractions by nheptane.
- Asphaltene fraction has potential as the precursor to produce carbon nanofibers.

ARTICLE INFO

 $\begin{tabular}{ll} Keywords: \\ Coal \\ Supercritical CO_2 \\ Ethanol \\ Degradation \\ Liquid tar \\ \end{tabular}$

GRAPHICAL ABSTRACT

ABSTRACT

A novel and environmentally benign binary supercritical fluid system, comprised of supercritical CO2 and ethanol (SCCO2-ethanol), was employed to convert coal, a conventional energy resource, into high-value liquid tar which can be used as feedstock for the production of fuels/chemicals and carbon fibers. The SCCO2-ethanol system shows good performance for producing valuable liquid tar in high yield from Powder River Basin subbituminous coal. The results show that the highest yield of liquid tar reaches up to approximate 38 wt% (38 g/ 100 g raw coal) at 350 °C, and that SCCO₂ can promote the liquid tar yield by 5.6 wt% compared to that using pure ethanol due to the synergistic effect between ethanol and SCCO2. The liquid tars are better candidates as clean fuels than the raw coal or even bituminous coal due to their higher heating values and almost free from ash. The liquid tars from degradation in SCCO2-ethanol (liquid tarSCCO2-ethanol) and in ethanol without SCCO2 (liquid tarethanol) at 350 °C were characterized with multiple analytical techniques. Fourier transform infrared analyses indicated that both liquid tars have similar distributions of functional groups. The proportion of volatile and small-molecular species in liquid tar_{SCCO2-ethanol} is higher than liquid tar_{ethanol} according to thermogravimetric analysis. Further, gas chromatograph/mass spectrometry analyses show that phenols and aliphatic esters are the dominant volatile compounds in both liquid tars. The ¹H and ¹³C nuclear magnetic resonance analyses reveal that both liquid tars have low aromaticity and liquid $tar_{SCCO2-ethanol}$ contains more aromatic carbons than liquid tarethanol, especially highly condensed aromatic carbons. Methylene and aliphatic and aromatic CH3 are

^{*} Corresponding author.

E-mail address: mfan@uwyo.edu (M. Fan).

F.-J. Liu et al. Applied Energy 225 (2018) 460–470

the major aliphatic moieties in both liquid tars. The liquid tars can be separated into light oil and asphaltene fractions by extraction with n-heptane. In addition, the asphaltene fraction has potential to be used as the precursor for fabricating carbon nanofibers via electrospinning. Possible mechanisms for releasing volatile compounds and asphaltene from Powder River Basin sub-bituminous coal by $SCCO_2$ -ethanol degradation were also discussed.

1. Introduction

With increasing environmental concerns alongside the rapid growth in clean fuels and chemicals demand, green chemistry has been the focus of both fundamental researches and industrial applications for more sustainable processes [1–3]. Most current chemical processes involving the use of chemicals have the potential for adverse environmental impacts. In coal utilization, direct combustion and conventional conversion processes (e.g., pyrolysis, gasification, and liquefaction) for generating energy and fuels/chemicals are not green or sustainable due to $\rm CO_2$, $\rm NO_x$ and $\rm SO_x$ emissions, which constitute an unacceptable environmental pollution [4,5]. Therefore, it is desirable to develop environmentally benign, efficient, and value-added technologies of coal conversions to produce fuels/chemicals and carbon materials and reduce negative environmental impacts.

Coal has excellent advantages as feedstock for the production of value-added organic chemicals and advanced carbon materials because of its aromatic nature [5–7]. The major products from pyrolysis (or coking) and gasification processes are syngas and coke accompanied with low yield of liquid tar [8,9]. Further, processes converting coals to syngas then to fuels/chemicals have several disadvantages, including demanding strict operating conditions (> 800 °C), a lengthy production process, high production cost, high energy consumption, and significant pollution; as such, it is unsustainable for both economic and environmental considerations. Direct coal liquefaction is performed at relatively high temperature (ca. 450 °C) by using flammable and combustible $\rm H_2$ and uses high boiling-point and toxic solvents such as tetralin and 9,10-dihydroanthracene [10]. Moreover, separation of the liquefaction products and the solvent recovery are time-consuming and complicated.

More eco-friendly and sustainable coal conversion processes that would employ mild reaction conditions and utilize CO2 from other processes as a media or chemical precursor are highly desirable and attractive. In this regard, as a by-product from many processes, CO2 is easily and abundantly available in high purity. Accordingly, focused research and development efforts should be made to realize environmentally benign processes and establish industrial applications for efficient coal utilization in the near future. Supercritical CO2 (SCCO2), with moderate critical pressure (73.8 bar) and temperature (31.1 °C), has received much attention as a green alternative solvent or reaction media for a wide range of applications due to its non-flammable, nontoxic, and easily available properties [1,11-13]. However, application of SCCO2 as alternative solvent has been limited by its almost zero dipole and low solvation capacity for many targeted substances [14], including solid carbon resources like biomass, oil sand and coal. To overcome this limitation, SCCO2 is usually used in combination with other fluids (i.e., co-solvents), especially polar solvents, to improve its performance.

The SCCO₂ combined with other fluids such as water, acetone, and/ or ionic liquid has been used for producing aromatic chemicals (especially phenols) or reducing sugar from biomass and its derivatives [15–18]. In addition, SCCO₂ extraction technique has proved to be an effective pretreatment method for improving downstream processing of the biomass [19–21]. Rudyk et al. [22,23] investigated recovery of bitumen from oil sands by SCCO₂ extraction using water or alcohols as co-solvents and found that the yield of bitumen from oil sands can be enhanced by the co-solvents. The SCCO₂ was also used for extracting oil from oil shale with hexane or acetone as the co-solvent [24]. Some

investigations have focused on drying coals using SCCO₂ [25–28]. To our knowledge, only one publication reported on SCCO₂ extraction of different coals with addition of *N*-methyl-2-pyrrolidone (NMP) [29]. Further, extraction yields of all the coals with different ranks are lower than 30 wt% and the recovery of NMP is difficult because of its high boiling-point. Low-carbon alcohols (e.g., methanol, ethanol, and isopropanol) with low-boiling point and low viscosity have been reported as solvents for thermal dissolution of coals under sub- or super-critical conditions [4,30,31]. To date, no reports have focused on the conversions of coals by using SCCO₂ in combination with low-carbon alcohols.

In the present study, an environmentally benign and low-toxicity SCCO₂-ethanol binary supercritical fluid is proposed for value-added utilization of a Wyoming sub-bituminous coal. Degradation of Powder River Basin sub-bituminous coal (PRBSBC) was carried out in SCCO₂-ethanol system under mild conditions (< 400 °C) for the production of valuable liquid tar which can be used as raw material for generating fuels/chemicals and carbon materials precursor. The possibility of forming an asphaltene fraction from the liquid tar as precursor for fabricating carbon nanofibers (CNFs) was also investigated.

2. Materials and methods

2.1. Materials

PRBSBC used in this study was from Wyodak coal mine in Powder River Basin, WY, provided by Black Hills Corporation. The coal sample was milled to pass through a 200 mesh sieve (with particle size $<75\,\mu\text{m}$). Proximate and ultimate analyses of raw PRBSBC are listed in Table 1. Anhydrous ethanol (99.9%, ACS) was purchased from Decon, Labs, Inc. Methanol (99.9%, ACS), isopropanol (99.9%, ACS), acetone (99.9%, ACS), toluene (99.9%, ACS), and n-hexane (99.9%, ACS), n-heptane (99.9%, ACS), and $N_N\text{-dimethylformamide}$ (DMF, HPLC) were purchased from Fisher Scientific. Polyvinyl pyrrolidone (PVP, average $M_w=360,\,000\,\text{Da}$) was purchased from Sigma-Aldrich. All the solvents were used without further purification. Liquid CO $_2$ (UHP, 99.999%) and N_2 (UHP, 99.999%) were supplied by United States Welding, Inc.

2.2. Degradation of PRBSBC in SCCO₂-ethanol to produce liquid tar

As shown in Fig. 1, the $SCCO_2$ -ethanol degradation of PRBSBC was performed in a HPR-series high pressure chemical reactor (Supercritical Fluid Technologies, Inc., USA) with a 500 mL vessel. The reactor mainly consists of three units: liquid CO_2 cylinder, SFT 10 supercritical fluid pump, and integrated control box. Typically, 5 g of PRBSBC and 50 mL of ethanol were first loaded in the 500 mL vessel. The vessel was sealed

Table 1
Proximate and ultimate analyses (wt%) of PRBSBC.

Proximate analysis			Ultimate analysis (daf)				$S_{t,d}$	H/C
$M_{\rm ad}$	$A_{\rm d}$	$V_{ m daf}$	С	Н	N	O _{diff}		
16.00	8.18	48.73	78.87	3.72	1.01	15.93	0.47	0.5616

^a Legend: daf, dry and ash-free basis; $M_{\rm ad}$, moisture (air-dried basis); $A_{\rm d}$, ash (dry basis, i.e., moisture-free basis); $V_{\rm daf}$, volatile matter (dry and ash-free basis); $O_{\rm diff}$, oxygen content, determined by difference; and $S_{\rm t,d}$, total sulfur (dry basis).

Download English Version:

https://daneshyari.com/en/article/6679933

Download Persian Version:

https://daneshyari.com/article/6679933

Daneshyari.com