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H I G H L I G H T S

• A practical problem tackled mathematically with focus on computational aspects.

• Sizing of energy storage systems installed in a distribution network.

• Uncertainty taken into account via a stochastic programming formulation.

• A computationally hard scenario-based problem solved via a decomposition approach.

• A metric for scenario reduction exploiting the problem structure proposed.

A R T I C L E I N F O

Keywords:
Energy storage sizing
Distribution network
Optimal power flow
Scenario reduction
Two-stage stochastic programming

A B S T R A C T

Energy storage systems have been recently recognized as an effective solution to tackle power imbalances and
voltage violations faced by distribution system operators due to the increasing penetration of low carbon
technologies. To fully exploit their benefits, optimal sizing of these devices is a key problem at the planning
stage. This paper considers the sizing problem of the energy storage systems installed in a distribution network
with the aim, e.g., of preventing over- and undervoltages. In order to accommodate uncertainty on future
realizations of demand and generation, the optimal sizing problem is formulated in a two-stage stochastic fra-
mework, where the first stage decision involves the storage sizes, while the second stage problem provides the
optimal storage control policy for given demand and generation profiles. By taking a scenario-based approach,
the two-stage problem is approximated in the form of a single multi-scenario, multi-period optimal power flow,
whose size, however, becomes computationally intractable as the number of scenarios grows. To overcome this
issue, the paper presents a procedure to compute upper- and lower bounds to the optimal cost of the approximate
problem. Moreover, when the objective is to minimize the total installed storage capacity, an iterative algorithm
based on scenario reduction is proposed, which converges to the optimal solution of the approximate problem.
The whole procedure is tested on the topology of the IEEE 37-bus test network, considering scenarios of demand
and generation which feature over- and undervoltages in the absence of storage devices.

1. Introduction

The ever growing penetration of low carbon technologies, such as
distributed generation (e.g., wind and photovoltaic), electric vehicles
and heat pumps, is a matter of concern for distribution system operators
(DSOs), which have to guarantee a predefined level of quality of elec-
tricity supply. For instance, modifications of typical power flows in
distribution networks may cause abnormal fluctuations of the voltage
magnitude, which are not tolerated beyond specified limits around the
nominal value. In this respect, energy storage systems (ESSs) represent
an effective solution for DSOs to tackle voltage problems in distribution

feeders [1], alternative to other solutions, such as traditional grid re-
inforcement, on-load tap changers at secondary substations [2,3], soft-
open points [4], and reactive power control of distributed generation
(DG) [5]. ESSs are storage devices interfaced with the grid through a
power electronic converter. In this way, they can be controlled to act as
loads in case of overvoltages, and as generators in case of under-
voltages. This adds to a number of other benefits that ESSs bring to the
whole electricity system, and to different stakeholders [6–8].

To fully exploit the benefits of storage devices, the problem of their
optimal allocation must be addressed at the planning stage. The ESS
allocation decision problem consists of defining the type and the
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number of devices to be deployed, their locations (siting), and sizes
(sizing) [9]. The interested reader is referred to the survey paper [10]
for a literature review on ESS allocation techniques, classified ac-
cording to both the ESS application and the methodology used to find a
solution. In most cases, optimal ESS siting and sizing are carried out
simultaneously, either through a cost-benefit analysis [11,12], or for-
mulating a single optimization problem [13–15]. In other cases, the two
problems are dealt with separately. A heuristic method is proposed in
[16] to detect the sensitive buses of the grid under a wide range of
contingencies. Voltage magnitudes and angles under the contingencies
are forecast by exploiting complex-valued neural networks and time
domain power flow. In [17], the ESS siting problem is tackled via a
different heuristic approach, which returns the most suitable ESS lo-
cations in the grid based on voltage sensitivity analysis. In some ap-
plications, ESS locations may also be decided a priori, and the ESS al-
location problem boils down to determine only the size of each ESS.

For given ESS type, number and locations, a quite general approach
is to formulate the ESS sizing problem in an optimal power flow (OPF)
framework, where a suitable cost function (typically including storage
installation and operation costs, as well as power losses and generation
costs) is optimized, subject to storage dynamics, power flow and net-
work constraints. Linearization of power flow constraints via DC ap-
proximation is often adopted when dealing with transmission networks,
where line resistances are typically negligible compared to line re-
actances [18–20]. When such an assumption is not valid, like in dis-
tribution networks, a full or approximated AC OPF is considered.
Branch flow equations are used to model the power network in
[13,14,21]. A bi-level optimization model, where the second-level
problem is a linear program minimizing the daily coincident peak de-
mand, is proposed in [15]. In [22], linear approximations of voltage,
branch flow, and network power losses are presented, leading to a
linearized OPF. A simplified power balance model of the network is
adopted in [23], while in [24] the distribution network is modelled

through a continuous tree with linearized DistFlow model. These sim-
plified models are defined to cope with the computational burden of
(multi-period) AC OPF problems, due to nonconvexity of AC power flow
equations, and time-coupling constraints introduced by ESS dynamics.
Other solution strategies proposed in the literature for the same pur-
pose, rely on semi-definite convex relaxations of the OPF problem
[25–27], second-order cone programming [13,21], and alternating di-
rection method of multipliers [14].

In deterministic OPF problems, net power injected at load buses is
assumed to be given, but unfortunately future realizations of demand
and DG are unknown at the planning stage. This calls for a formulation
of the optimal ESS sizing problem which takes uncertainty sources ex-
plicitly into account. Stochastic optimization paradigms are suitable to
this aim [28]. Probability density functions of wind power generation
and demand are considered in [20,29] within probabilistic OPF for-
mulations. A two-stage programming formulation of the optimal ESS
sizing problem is proposed in [23], including chance constraints to
model wind forecast errors. Chance constraints accounting for wind
power and demand forecast errors, are also considered in [30]. Since
stochastic optimization problems are typically intractable, they are
often tackled by defining a large number of scenarios, which are ex-
pected to represent the original stochastic information. Suitable sce-
nario generation techniques based on time-series and regression models
[31], as well as copula models [32], can be used to this aim. Then, an
approximate reformulation of the optimization problem is derived by
replicating power flow variables and constraints for each scenario
[13,14,23]. In order to keep the problem size affordable, scenario-based
approaches are often coupled with techniques to downsize the scenario
set. To this aim, clustering algorithms, such as K-means and centroid-
linkage clustering, are adopted [13,23]. Another possibility is to apply
scenario reduction techniques based on the notion of probability dis-
tance [33]. However, as shown in [34], all these techniques may fail in
preserving the useful information contained in the original scenario set.

Nomenclature

Acronyms

AC alternating current
DC direct current
DG distributed generation
DSO distribution system operator
ESS energy storage system
LV low voltage
MV medium voltage
OPF optimal power flow
PF power flow
SDP semidefinite programming

Parameters

TΔ time step
T number of time steps per day
η η,s

c
s
d charging/discharging efficiency of storage at bus s

Γ , ϒ , Ξs s s column vectors of the polygonal approximation of the
capability curve of storage at bus s

ρs power-to-energy ratio of storage at bus s
E s lower limit of the energy level of storage at bus s
Sij upper bound to the apparent power through line i j( , )
vi upper bound to the voltage magnitude at bus i
vi lower bound to the voltage magnitude at bus i
pd scenario of demand and generation
πd probability of scenario pd
Yij i j( , )-entry of the network admittance matrix Y

yij line admittance between buses i and j

Sets

D index set of scenarios
E set of lines
L set of load buses
N set of buses
P set of scenarios
S set of buses equipped with storage
T set of time indexes
X feasible solution set of the first-stage problem
Y feasible solution set of the second-stage problem

Variables

Es energy capacity of storage at bus s
r t( )s active power exchanged by storage at bus s and time t
b t( )s reactive power exchanged by storage at bus s and time t
e t( )s energy level of storage at bus s and time t
P t( )i

D active power demanded at bus i and time t
P t( )i

G active power generated at bus i and time t
Q t( )i

D reactive power demanded at bus i and time t
Q t( )i

G reactive power generated at bus i and time t
S t( )i net complex power injection into bus i at time t
V t( )i complex voltage at bus i and time t
x decision variables of the first-stage problem
yd decision variables of the second-stage problem for sce-

nario pd
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