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H I G H L I G H T S

• Deep learning-based models are de-
veloped for fault diagnosis of variable
flow refrigerant system.

• The parameter optimized selection
strategy of deep belief network model
is proposed for fault diagnosis.

• Feature extracted by the unsupervised
layer can improve the fault diagnosis
performance of models.

• The model based DBN method does
not need very deep for fault diagnosis
of variable flow refrigerant system.

G R A P H I C A L A B S T R A C T

Building energy consumption increased year by year with the development of society. While air conditioning and
heating systems account for approximately half of the total energy consumption of the building. Air conditioning
and heating equipment will inevitably occur some faults after the long run period, and faults will cause energy
consumption of these equipment increased. Fault diagnosis of air conditioning system is of great significance to
energy saving of the building. Therefore, a novel fault diagnosis approach for building energy saving is proposed
through the deep learning method which is deep belief network.
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A B S T R A C T

The fault diagnosis of air-conditioning systems is of great significance to the energy saving of buildings. This
study proposes a novel fault diagnosis approach for building energy saving based on the deep learning method
which is deep belief network, and its application potential in the air conditioning fault diagnosis field is in-
vestigated. Then, a parameter optimization selection strategy is developed for model optimization. Four kinds of
faults of the variable flow refrigerant system under heating mode are used to evaluate the performance of the
models. The fault diagnosis results show that the deep belief network model with initial parameters can be used
to diagnose the faults of the variable flow refrigerant system. Through the parameter optimization selection
strategy, the fault diagnosis correct rate of the optimized model is 97.7%, which is improved by 5.05% compared
with the model with initial parameters. The number of hidden layers of the deep belief network model is selected
to be 2 layers. This result indicates that the fault diagnosis for variable flow refrigerant systems may not require a
very deep model. Additionally, the performance of the optimized deep belief network model is compared with
that of the traditional back propagation neural network, and the former is better. This finding also shows that the
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unsupervised restricted Boltzmann machine layer for data feature reconstruction can improve the fault diagnosis
performance.

1. Introduction

Building energy consumption has increased year by year with the
development of the society. This accounts for approximately 40% of the
global primary energy demand [1]. Meanwhile, air-conditioning and
heating systems account for approximately half of the total energy
consumption of buildings [2,3]. Especially when the Chinese govern-
ment advocates a coal-to-electricity policy, the energy consumption of
building heating will continue to increase [4]. Fault leads to decrease in
efficiency in the field of induction motor [5], stator current [6], sub-
mersible induction motor [7], maintenance decision [8] and air-con-
ditioning system [9]. Running a fault system leads to increase in its
energy consumption and carbon emission which causes economical and
environmental losses [10]. Therefore, diagnosing fault prior to system
failure saves energy, reduces downtime cost, carbon emission and also
time required for planning spares and inventory. Air-conditioning and
heating equipment will inevitably experience faults after their long
running operation, and these faults will cause the increase in energy
consumption of the equipment. Nearly 42% of chiller service resources
and 26% of chiller repair costs were wasted because of eight typical
component faults, including condenser fouling, refrigerant leakage, etc.
[11]. A survey on buildings in the UK found that 25–50% of energy
wastage were due to faults in building heating, ventilation, and air
conditioning (HVAC) systems. If those faults were detected and diag-
nosed early, then the range could be reduced below 15% [12]. Energy
wastage was reported to be 5.45% for 40% cooling coil leakage of the
variable air volume (VAV) systems when faults occurred on all floors
[13]. Liang [14] analyzed the fault diagnosis and energy consumption
of an air-conditioning system and the results demonstrated that faults
could affect energy consumption; hence an effective fault diagnosis
strategy is relevant to energy saving. In recent years, China has con-
tinued to implement energy-saving emission reduction initiatives, green
buildings and building energy efficiency policies [15]. Therefore, the
fault diagnosis study of HVAC systems has great potential for building
energy saving and environment protection.

1.1. Studies on the application of data-driven methods

The fault diagnosis of HVAC systems can be divided into three ca-
tegories: quantitative model-based methods [16], qualitative model-
based methods [17] and data-driven methods. Data-driven methods
which currently dominates air-conditioning fault diagnosis research,
include principal component analysis (PCA), neural network (NN),
support vector machine (SVM) and other machine learning methods.
(1) PCA: Wang [18] introduced the data-driven method into the sensor
fault detection and diagnosis (FDD) of HVAC systems in 2005. The
following year, Xiao [19] developed a diagnostic tool for online sensor
health monitoring and fault diagnosis of air-handling units (AHU) of in
building automation systems. To reduce the impact of data noise on
sensor FDD performance, Xu [20] proposed the sensor FDD strategy
based on wavelet analysis and PCA methods. Xiao [21] proposed an
expert-based multivariate decoupling method to enhance the capability
of the PCA-based method in fault diagnosis. A sensor FDD strategy was
also developed by exploiting model-based sensor redundancy with a
state observer design [22]. Hadi [23] proposed an integrated frame-
work for FDD using PCA, joint angle analysis and linear causal methods.
Du [24] proposed a data-driven based evaluation logic to assess the
measurement reliability by using subtractive clustering and PCA
methods. Guo [25] proposed an enhanced sensor FDD method based on
the Satizky-Golay and PCA methods. Modularized PCA method com-
bined with expert-based multivariate decoupling for FDD was devel-
oped for the variable refrigerant flow (VRF) system faults [26]. (2)
Neural network: Wang proposed a model to monitor the performance
degradation of valves by using the recurrent CMAC NN [27]. Du and Bo
[28,29] combined wavelet analysis with the NN to diagnose faults in
VAV and AHU systems. Zhu [30] introduced the fault diagnosis of
sensors in an AHU based on the NN that was pre-processed by wavelet
and fractal. The combined strategy of using dual NNs was also proposed
to detect the faults of sensors in the supply air temperature control loop
of AHU [31]. Moreover, a FDD strategy based on NNs and subtractive
clustering analysis was used to diagnose the fault source through the

Nomenclature

ai the bias of visible layer
bj the bias of hidden layer
DBN deep belief network
CD contrastive divergence
EXVheating heating electronic expansion valve opening
EXVsubc electronic expansion valve opening corresponding to the

subcooler
fcom compressor operational frequency, Hz
fcom T, compressor operational target frequency, Hz
fod fan, outdoor fan operational frequency, Hz
h the hidden layer unit
Icom compressor operational electric current, A
Iod fan, outdoor fan operational electric current, A
NN the neural network
Nh number of hidden layer nodes
NRBM maximum number of RBM epochs
NNN maximum number of neural network epochs
Nlayers the depth of hidden layer
Pcond condensing saturation pressure, MPa
Pevap evaporating saturation pressure, MPa
RBM restricted Boltzmann machines

Tcom dis, compressor discharge temperature, °C
Tcom sh, compressor shell temperature, °C
Tdf deforest temperature at the bottom side of condenser, °C
Tsubc out L, , liquid refrigerant temperature at the subcooler outlet pipe,

°C
Tsubc out V, , vapor refrigerant temperature at the subcooler outlet pipe,

°C
TSPR in, vapor–liquid separator inlet pipe temperature, °C
TSPR out, vapor–liquid separator outlet pipe temperature, °C
Tcom compressor module temperature, °C
Tod fan, outdoor fan module temperature, °C
v the visible layer units
wij the weight between the visible and hidden layers
Z the normalized constant
εRBM the learning rate of RBM
εNN the learning rate of NN

Greeks

ω connection weights
ε the learning rate
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