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H I G H L I G H T S

• The BPO performances are quantified by the efficiency, efficacy and quality metrics.

• Meta-models are suitable for speeding up the optimization of building simulation.

• MARS model outperforms all the other models in the efficiency and efficacy.

• The pursuit of the solution quality implies an efficiency reduction.

• Sampling methods of the initial population have a low impact on the performances.
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A B S T R A C T

Although evolutionary algorithms coupled with building simulation codes are often applied in academic re-
search, this approach has a limited use for actual applications of building design due to the high number of
expensive simulation runs. The use of a surrogate model can overcome this issue.

In the literature there are several functional approximation models that can emulate the building simulation
during the optimization, thus increasing the process efficiency. However, there are no evidence-based studies
comparing the performances of these methods for the building design optimization.

This study compares the efficiency, the efficacy and the quality of the Pareto solutions obtained by
Polynomial, Kriging (GRFM), Radial-basis function networks (RBFN), Multivariate Adaptive Regression Splines
(MARS) and support vector machines (SVM) functional approximations. The test bed of the comparison is the
evaluation of the optimal refurbishment of three reference buildings for which the actual Pareto front is also
obtained through a brute-force approach.

The results show that the MARS method outperforms the other surrogate models both in terms of efficiency
and effectiveness, and also by assessing the quality of the Pareto front.

1. Introduction

The coming into force of the European Directive 2010/31/EU [1]
guides the member states to the reduction of energy demand, and
consequently carbon emissions, of the European building stock. More-
over the directive considers the economic effectiveness by means of the
“cost-optimal approach” [2]. Optimization of the building and HVAC
design and control becomes an essential tool in the design of new
buildings and building refurbishments approaching the nZEB target
[3–6]. Besides, when approaching the nZEB target while maintaining
economical convenience, buildings might be easily subject to poor
comfort conditions [7,8]. Hence, the designers are always confronted
with a multi-objective optimization problem with two or more con-
flicting goals. The overall gains in design quality as well as the cost

reductions that can be achieved through a correct optimization process
are high. For this reason, architects and engineers become increasingly
aware of the potential benefits of applying building performance opti-
mization (BPO) in the early stages of the design process, often coupling
the optimization codes with dynamic building performance simulation
(BPS) since it better describes the dynamic interactions between the
building, energy systems, occupants and the outdoor environment.

The use of gradient-based optimization or linear programming
methods are not easily adapted for BPO since the relationship between
design variables and cost functions can be non-convex, non-linear and
the optimization problem can be subjected to non-linear constraints or
to numerical approximations [9]. Thus, evolutionary algorithms (EA)
are frequently adopted since they have less requirements on the pro-
blem characteristics. The popularity that EA are enjoying arises from
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the flexibility with which they can deal with various optimization
problems including high dimensional problems, integer or real para-
meters as well as continuous or discrete variables, non-differentiable
cost functions and so on [10]. The evolution of multi-objective opti-
mization in building simulation is well documented in several works
[7,11,12] and review papers illustrating the history and the current
state of the art [13–15]. According to Hamdy et al. [12], genetic al-
gorithms are to a considerable extent the most implemented algorithms
in the literature dealing with building optimization and the NSGA-II
[16] is probably the most popular.

The main challenge in the use of EA coupled with building simu-
lation is that EA usually still needs a large number of cost function
evaluations before a satisfying result can be obtained [17]. Moreover,
when considering BPS, the evaluation of the cost functions is compu-
tationally very expensive and the time taken to perform a single BPS is
of the order of minutes or hours, depending on the model complexity.
This aspect reduces the effectiveness of the BPO and especially its dif-
fusion in the professional practice [18]. For instance, if the simulation is
used for a simulation predictive control in a complex building, the time
required for the BPO is not short enough to implement actions in the
time frame of reliability of weather forecasts. For this reason, an ap-
proximation of the optimization problem is required to use EA effi-
ciently. According to Jin [19] the main approximation strategies are:

• Problem Approximation: when the BPS is replaced by a model that is
computationally less expensive. For example, when quasi-steady
state methods or hourly lumped capacitance models are used in lieu
of BPS [20–24].

• Evolutionary Approximation: when the fitness function evaluation of
the offspring is estimated from the fitness values of their parents by
means of the fitness inheritance approach [25].

• Fitness Imitation: when the alternative design solutions are clustered
and the fitness function is evaluated only for the centroid. The ob-
jective functions of the other individuals are then estimated from the
centroid response [26].

• Functional Approximation: when an explicit expression of the BPS is
constructed starting from the building simulation results and used
together with EA (a.k.a. meta-model or surrogate model approx-
imation) [27–34].

The functional approximation approach is the most used in BPS to
speed up the optimization process and this is the approach followed in
this research. The meta-model can be used in the EA in three main
ways. The first strategy is the direct use of a surrogate model in the
optimization process [35]. For instance, Eisenhower et al. [30] opti-
mized the energy consumption and the thermal comfort of an existing
building by using a gradient-based optimizer on the surrogate model
fitted on the EnergyPlus outcomes. However, the drawback of surrogate
models can be the accuracy, since the meta-model contains an un-
certainty in it. For instance Hopfe et al. [32] highlights the dis-
advantage of Kriging due to the limited number of design variables at
which the meta-model still does the quality estimations. For this reason,
the second strategy is the “generation-based control” [36]. In this ap-
proach, the surrogate model is firstly used in the EA code to find the
optimal solutions. Following on from this point, the cost functions are
evaluated for the optimal points by means of BPS and the surrogate
model is then updated. Xu et al. [34] used a support vector machine
algorithm (SVM) to fit a meta model. The regression model is then used
to investigate the variable space with the purpose of selecting the best
candidates for the cost function evaluation through BPS. Similarly,
Brownlee and Wright [33] used the surrogate model to generate a
surrogate population, to rank it and to select the best individuals for the
actual fitness function evaluation.

Finally, a local meta-model can be used alternatively to guide the
selection of new offspring (i.e. “individual-based control”) since it is
difficult to build a globally approximate model [37] especially in high
dimensional problems. In one of the earliest works, Knowles [38] de-
veloped ParEGO (Pareto Efficient Global Optimization) which extended
the local efficient global optimization algorithm EGO to the multi-ob-
jective optimization by converting the objective functions into a single
objective through the augmented Chebyshev function. A similar study is
proposed by Emmerich et al. [36], in which the authors extend the local
Gaussian Random Field meta-model (a.k.a. Kriging) to the multi-ob-
jective problems.

An efficient optimization with functional approximation is essential
to find the trade-off solutions in building design and refurbishment.
Moreover it can broaden the diffusion of the cost-optimal approach in
real world applications overcoming the issues that limit the diffusion
among architects and engineers. The performance of meta-models in

Nomenclature

β unknown coefficients of surrogate models
γ primal linear problem coefficient of the SVM model
Φ radial basis functions of the RBFN model
μ j( ) center of the j-th radial basis function of the RBFN model
aCD average crowding distance [–]
Bj j-th basis function in MARS model
BPO building performance optimization
BPS building performance simulation
EA evolutionary algorithms
EGO efficient global optimization algorithm
EPH energy performance for heating − −[kWh m y ]2 1

ESM energy saving measure
fi i-th cost function of the optimization problem
f vector of the cost functions
gi i-th regression function of the GRFM
GD Generational Distance [–]
GRFM Gaussian Random Field Model (a.k.a Kriging)
IF intermediate flat in an apartment building
IGD inverted generational distance [–]
HV hypervolume [–]
LHS Latin Hypercube Sampling
MARS Multivariate Adaptive Regression Spline model

MVS mechanical ventilation system
nBPS number of expensive BPS runs [–]
nBrute number of solutions in the true Pareto front obtained by

the Brute Force [–]
NE normalized number of expensive simulation runs [–]
nESM number of ESM combinations [–]
nHV hypervolume normalized with respect to the HV of the

brute force Pareto front [–]
nP population size of the optimization algorithm normalized

with respect to nESM [–]
nPar number of solutions in the Pareto front [–]
nPD pure diversity normalized with respect to the PD of the

brute force Pareto front [–]
NPV net present value [Eur]
PD pure diversity [–]
PH penthouse flat
PS percentage of true Pareto solutions [–]
RBFN Radial Basis Function Network
SD semi-detached house
SHGC solar heat gain coefficient [–]
Sp spacing [–]
SRS simple random sampling
SSS Sobol sequence sampling
SVM support vector machines model
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