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H I G H L I G H T S

• Two different recursive state-observer models using reduced p2D.

• Influence of reduction schemes analyzed for estimation process.

• Adjusted finite volume method for improved robustness.

• Modified EKF uses improved initialization and mass conservation.

• Estimation accuracy analyzed for both global and local states.
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A B S T R A C T

Two time-varying linear state-space representations of the generally accepted physicochemical model (PCM) of a
lithium-ion cell are used to estimate local and global states during different charging scenarios. In terms of
computational speed and suitability towards recursive state observer models, the solid-phase diffusion in the
PCM of an exemplaric MCMB/LiCoO2 lithium-ion cell is derived with the aid of two different numerical re-
duction methods in the form of a Polynomial Profile and an Eigenfunction Method. As a benchmark, the PCM
using the original Duhamel Superposition Integral approximation serves for the comparison of accuracy and
computational speed. A modified spatial discretization via the finite volume method improves handling of
boundary conditions and guarantees accurate simulation results of the PCM even at a low level of spatial dis-
cretization. The Polynomial Profile allows for a significant speed-up in computational time whilst showing a
poor prediction accuracy during dynamic load profiles. The Eigenfunction Method shows a comparable accuracy
as the benchmark for all load profiles whilst resulting in an even higher computational effort. The two derived
observer models incorporate the state-space representation of the reduced PCM applying both the Polynomial
and Eigenfunction approach combined with an Extended Kalman Filter algorithm based on a novel initialization
algorithm and conservation of lithium mass. The estimation results of both models show robust and quick re-
duction of the residual errors for both local and global states when considering the applied current and the
resulting cell voltage of the benchmark model, as the underlying measurement signal. The carried out state
estimation for a 4C constant charge current showed a regression of the cell voltage error to 1mV within 30 s with
an initial SOC error of 42.4% under a standard deviation of 10mV and including process noise.

1. Introduction and literature review

The high energy and power density compared to other battery
chemistries [1] established the lithium-ion battery as the state of the art
technology for electrical energy storage systems for a wide application
field, ranging from small electronic devices up to large scale applica-
tions such as stationary storage systems or automotive battery packs
[2]. However, the manufacturing costs are still challenging [3], which
slows down a market penetration to an economically competitive

energy storage system especially in the automotive sector [3].
To address this circumstance, current efforts [4] aim to push the

price below US$200 per kW h or even lower for lithium-ion cells [2]
within the next few years. Other estimations are cautiously optimistic
and presume lower reduction of the production costs [5]. Besides the
development of enhanced battery materials such as the active materials,
the electrolyte, the metal collector foils and the separator [6] as well as
the economical factors through increased production volumes [7], the
size of lithium-ion cells [2] is regarded to be a substantial factor in
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order to decrease the production costs. The size of the cell is enlarged
either by longer electrodes or by thicker coatings of composite material.
Compared to small-sized cells, the application of large-sized (i.e.
>10 Ah) [8] cells offers potential towards the reduction of cost per kW h
[3]. This comes along with an influence on the cell performance based
on dynamics [9] and inhomogeneity effects [10] within the cell. With
increasing the cell’s size, safety hazards may also rise as the convertable
amount of energy during a failure scenario of a single cell correlates
directly to the cell size. Maximizing the efficiency and minimizing
safety threats [1] for a single cell or a whole battery pack consisting of
larger sized cells, brings up new challenges for battery management
systems (BMS). Battery monitoring algorithms mainly focus on an ac-
curate prediction of the state of charge (SOC), the state of health (SOH),
the capacity and impedance of a cell in order to ensure all operations
within its safe operating area (SOA) by means of BMS control strategy
[11]. Size effects must be considered for an accurate observing and
controlling of cells such as increased inhomogeneities for the local
current, concentration, potentials and temperature within the cell.
Since state of the art model-based monitoring algorithms incorporate
non-physicochemical models such as the equivalent circuit model
(ECM), besides the cell’s voltage, surface temperature and applied
current, no information on the local scale can be incorporated for state
estimation purposes. Falsely predicted SOC of a lithium-ion cell in-
creases the threat of using the cell out of the SOA and local harming
processes [12] may occur during operation. Considering electric ve-
hicles, a more simple but very meaningful worst-case scenario would be
a falsely predicted available range based on SOC and temperature es-
timation considering no local effects within large-sized cells, which
would compound the issue of range anxiety of the customer. A more
profound and mechanistic model for the lithium-ion cell which offers
information on the local scale is the physicochemical model (PCM),
commonly known as pseudo two-dimensional model [13]. The gen-
erally more complex and also more inaccurate model compared to the
strictly empirical ECM offers great potential to ease the problems ac-
companied with inhomogeneities in large sized cells. By reformulating
the underlying equations, state observer models can be derived, which
are able to incorporate information on the local scale to enhance the
accuracy of monitoring lithium-ion cell performance during challenging
tasks such as fast charging.

In this work, the PCM is used for implementation of two different
recursive state observer models to show the suitability for accurate state
monitoring of lithium-ion batteries under varying load scenarios. To the
author’s best knowledge, the presented work is the first attempt to es-
timate local states of a fully-spatially-resolved PCM solved via the finite
volume method (FVM) using a modified extended Kalman filter (EKF)
which conserves lithium mass and the states’ physical interpretation
along with their spatial distribution.

1.1. Models for monitoring lithium-ion batteries

The literature review reveals plenty of models to describe and
predict the behaviour of lithium-ion batteries. In the following part, the
decision for the PCM model is outlined in comparison to other, widely
used models of lithium-ion batteries in the application field of battery
monitoring algorithm.

Artificial neural networks (ANN) models incorporate mathematical
models which reduce the error between input and output signal using
weighting and cost functions, which are adjusted by training data. To
parameterize an ANN, all battery operation areas need to be covered
and the training process becomes a time and cost-intensive task. The
work of Cai et al. [14] deals with a model for a nickel-metal hydride
battery and uses the applied current and the cell voltage as input sig-
nals. Since a trial of different functions of these input signals is needed,
a dramatical increase of the computational costs is seen. The authors
aspire to a more computationally efficient model incorporating a me-
chanistic description of the electrochemical behaviour of a lithium-ion

cell and thus neglect this type of model for this work.
Besides ANN models, the equivalent circuit model (ECM) is widely

used in research and application field of the BMS for monitoring the
global states of a lithium-ion battery. The work of Hu et al. [15] pre-
sents a variety of different ECMs and the reader is referred to this
publication for more profound information. In short, the ECM is an
empirical, mathematical approach which requests little computational
power [11], therefore less simulation time and can be easily para-
meterized via experimental data of the cell [9]. The main drawback of
this approach is its limited validity beyond the chosen parameterization
window as the model parameters are fitted to experimental data under
specific operating conditions [9] and the model itself is not based on
general physical or chemical principles governing the performance of
electrochemical cells. In automotive applications, the extending oper-
ating window in terms of temperature, voltage and applied current may
lead to false predictions and subsequent reduction of lifetime, safety
and performance. Since the efforts of Plett et al. which firstly used a
non-linear Kalman filter (i.e. EKF) [16] to estimate the cell’s SOC and
subsequently a Sigma-Point Kalman Filter [17] to further increase the
accuracy of the estimated global states of the cell, the application of
filter and observer techniques is widely used in order to gain accurate
monitoring of lithium-ion batteries via the ECM. Other works focussing
on the same problem such as Zhang et al. [18] fitted the ECM para-
meters based on electrochemical properties and showed a distinct im-
provement compared to commonly used parameterization methods.

Most recent work of Wei et al. [19] seem to further ease the in-
accuracy as well via data-driven, online adapted ECM parameterization.
Nevertheless, since the ECM still lacks of a mechanistic description of
the cell’s electrochemical behaviour and no local states in the lithium-
ion battery can be estimated, this model is not suitable for this work.

The newman-type PCM [13] – often referenced as pseudo two-di-
mensional model – correlates the fundamental principles of transport
phenomena, thermodynamics and electrochemistry on a macroscopic
(i.e. electrolyte domain) and microscopic (i.e. particle domain) scale for
a lithium-ion battery [9]. Compared to the strictly empirical ECM, the
mechanistic PCM not only consumes more computational time based on
its complexity but also requires vast parameterization effort due to the
amount of more than 30 parameters and the nature of the parameters
such as transport properties, electrode’s morphology or reaction rate
constants. The comparably high computational demand and para-
meterization effort results in a model which then shows superior va-
lidity over a wider range of applications and offers the incorporation of
further physics-based processes such as aging phenomena [20], volume
expansion [21] and safety related effects [22]. Large-sized cells and
increased coating thicknesses of the electrodes inevitably promote
gradients in potential and concentration, which can be simulated by the
PCM. Based on the growing importance of localized cell utilization, the
PCM is the model of choice in order to describe the performance of
future cell generations accurately enough.

1.2. Recursive state observer models using PCM

The complexity of the parameterization for a PCM recommends an
application of filter techniques to iteratively reduce the deviance be-
tween simulated and measured states of a lithium-ion battery. Only a
few research efforts [23–25] are dealing with recursive state observer
models using the PCM [26], which shows the necessity of our work.

Smith et al. [23] reduced the PCM to a single input multiple output
model, which is linearized at 50% SOC. Based on this model, a linear
Kalman filter was implemented for the estimation of local potentials,
concentration gradients and the SOC from the applied current and cell
voltage measurements. The estimation for a 6 Ah lithium-ion cell shows
good performance within a SOC range from 30% to 70% by using 2 A
and 25mV process noise for the applied current and the cell voltage.
The computational efficiency is comparable to the performance of
ECMs [23], however, the filter performance beyond 70% SOC could be
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