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H I G H L I G H T S

• Introduces the need for urban building energy modeling and current approaches.

• Proposes a DUE-S framework that integrates machine learning and simulation methods.

• DUE-S models urban energy use on multiple spatial and temporal scales.

• Evaluates the DUE-S framework on case study of 22 dense urban buildings.

• Achieves acceptable prediction accuracies at an urban scale.

A R T I C L E I N F O

Keywords:
Building energy
Data-driven
Machine learning
Multi-scale
Simulation
Urban energy modeling
Urban context

A B S T R A C T

The world is rapidly urbanizing, and the energy intensive built environment is becoming increasingly re-
sponsible for the world’s energy consumption and associated environmental emissions. As a result, significant
efforts have been put forth to develop methods that can accurately model and characterize building energy
consumption in cities. These models aim to utilize physics-based building energy simulations, reduced-order
calculations and statistical learning methods to assess the energy performance of buildings within a dense urban
area. However, current urban building energy models are limited in their ability to account for the inter-building
energy dynamics and urban microclimate factors that can have a substantial impact on building energy use. To
overcome these limitations, this paper proposes a novel Data-driven Urban Energy Simulation (DUE-S) frame-
work that integrates a network-based machine learning algorithm (ResNet) with engineering simulation to better
understand how buildings consume energy on multiple temporal (hourly, daily, monthly) and spatial scales in a
city (single building, block, urban). We validate the proposed DUE-S framework on a proof of concept case study
of 22 densely located university buildings in California, USA. Our results indicate that the DUE-S framework is
able to accurately predict urban scale energy consumption at hourly, daily and monthly intervals. Moreover, our
results also demonstrate that the integration of data-driven and engineering simulation approaches can partially
capture the inter-building energy dynamics and impacts of the urban context and merits future work to explore
how they can be improved to predict sub-urban scale energy predictions (single building, block). In the end,
successfully predicting and modeling the energy performance of urban buildings has the potential to inform the
decision-making of a wide variety of urban sustainability stakeholders including architects, engineers and pol-
icymakers.

1. Introduction

The world is rapidly urbanizing. Over 50% of the world’s population
now resides in cities, and the number is expected to increase to 67% by
2050 [1]. Cities account for over 75% of all primary energy use and
over 80% of gree[2,3]nhouse gas emissions, with the largest portion of

such consumption (more than 40%) and related emissions coming from
the built environment [2,3]. As a result, urban buildings represent a
tremendous opportunity to enhance the energy sustainability of cities.
According to recent estimates, as much as 90% of urban buildings are
energy efficient, and up to 30% of an individual building’s energy
consumption is wasted [4].

https://doi.org/10.1016/j.apenergy.2018.05.023
Received 3 January 2018; Received in revised form 3 May 2018; Accepted 5 May 2018

⁎ Corresponding author.
E-mail address: rishee.jain@stanford.edu (R.K. Jain).

Applied Energy 225 (2018) 1176–1189

0306-2619/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03062619
https://www.elsevier.com/locate/apenergy
https://doi.org/10.1016/j.apenergy.2018.05.023
https://doi.org/10.1016/j.apenergy.2018.05.023
mailto:rishee.jain@stanford.edu
https://doi.org/10.1016/j.apenergy.2018.05.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2018.05.023&domain=pdf


Extensive academic and industrial efforts have been undertaken to
develop energy conservation measures within individual buildings
(e.g., demand driven heating/cooling controls). However, building
energy use is significantly affected by other buildings (e.g., shading
impacts heating and natural lighting) and microclimate factors (e.g.,
changes in wind patterns impact heat transfer and cooling loads). A key
challenge in enhancing the energy efficiency of buildings in dense
urban areas is the lack of accurate energy performance prediction
models that consider this urban context. Current building energy
models are limited in their ability to account for the inter-building
energy dynamics and interdependencies that can have dynamic and
non-linear impacts on the energy use of urban buildings. Without ac-
curate performance characterization and prediction, designers and en-
gineers struggle to assess the energy, environmenta, and economic
implications of their early-stage design and retrofit decisions, thus
failing to shape a building’s energy use for its entire lifecycle. This
challenge is further exacerbated by adjacent buildings and the overall
urban area becoming increasingly energy intensive resulting in sub-
stantial energy, environmental and monetary impacts [5–7].

Rapid growth in new sensing technologies and emerging smart city
initiatives has led to an explosion of structured and unstructured data
streams describing buildings and their surrounding urban environment.
Simultaneously, the field of artificial intelligence is quickly developing
new machine learning models that harness these new data streams to
predict and characterize a wide range of physical phenomeno a within
cities (e.g., air pollution dynamics [8], traffic flow [9] and energy use
[10]). The primary objective of this paper is to introduce a novel Data-
driven Urban Energy Simulation (DUE-S) framework that aims to
bridge the gap between traditional engineering-based energy simula-
tion models and emerging data-driven machine learning models1. We
postulate that by integrating the two methods we can take the first step
towards accurately characterizing the energy performance of urban
buildings at multiple temporal (e.g., hourly, daily, monthly) and spatial
(e.g., single building, block, urban) scales. These accurate character-
izations can then help facilitate the assessment of design and retrofit
decisions. The rest of the paper is organized as follows: Section 2 pre-
sents an overview of existing work on urban energy modeling and
discusses the main gaps; Section 3 introduces the methodology of DUE-
S that integrates a residual network machine learning model with en-
gineering simulation to better understand how buildings consume en-
ergy on multiple temporal and spatial scales; Section 4 proposes the
setup of a case study with 22 densely located university buildings in
southern California, USA, and the measures used to validate the per-
formance of DUE-S framework; Section 5 discusses the case study re-
sults; Section 6 outlines the limitations and future work; and Section 7
concludes the paper.

2. Background

Urban energy modeling is the virtual representation and reproduc-
tion of the energy performance for buildings located in an urban area.
Generally, urban energy modeling aims to capture the urban context by
simulating energy dynamics at multiple spatial and temporal scales. In
this section, we provide a brief review of the existing literature on
urban energy modeling: the surrounding urban context, multi-scale
performance, and calibration. Finally, in order to contextualize our
proposed model within the existing body of work we also provide a
review of how emerging data-driven methods have been applied to the
energy modeling problem setting.

2.1. Urban context

Energy is primarily consumed in buildings to smooth thermal loads
(e.g., add or remove sensible and latent heat to achieve thermal balance
with conduction, convection and radiation from outside and inside the
building) and power loads (e.g., power lighting system, air handling
equipment, computers, and other devices used by occupants). These
loads are significantly influenced by the building’s urban context
through effects from neighboring buildings, vegetation and other urban
systems [8,9,11]. For example, a building’s outside temperature could
be abnormally high due to urban heat island effects [12,13]. As the sun
moves, the surrounding urban built environment may cast shadows and
shadings that in turn impact a building’s energy use [14]. Because air
dynamically flows around and within buildings, wind is another key
element that determines the rate of building heat transfer (e.g., con-
vection), humidity, cooling and ventilation loads [15]. Wind speed and
direction change drastically due to urban context, as nearby buildings
and trees can influence wind patterns. Previous research indicates that
fluid dynamics in an urban area should be included in energy modeling
as it can have a substantial impact [16]. Furthermore, urban buildings
can be served by district energy systems such as heating networks [17],
district cooling plants [18] and energy hubs [19], making the energy
use of one building highly interdependent on surrounding buildings.
Lastly, the dynamics that occur in networks of building occupants can
also impact urban energy use as connections and interactions among
occupants have been found to vary the heating/cooling loads [11,20],
lighting loads [21] and plug loads [22] across buildings.

Engineering simulation programs (e.g., EnergyPlus, DOE2, IES-VE)
reproduce the physical energy processes of buildings by: (1) taking
inputted building geometries and abstracting them to a network of
connected nodes, (2) creating heat balance equations for all nodes
across each hour of a virtual year and (3) solving those equations within
each time step, using many assumed non-geometric building para-
meters to calculate a building’s energy consumption. However, because
there are a large number of nodes to model and equations to solve,
simulating the performance of hundreds of buildings across a city at
once is both time intensive and computationally expensive [23]. Efforts
have been made to simplify this modeling process. Specifically, the
geometries can be extracted from GIS (Geographic Information Sys-
tems) [24,25], CityGML [26], BIM (Building Information Modeling)
[27], CAD (Computer Aided Design) [28] or digital images [29]. Ad-
ditionally, non-geometric properties (e.g., building and construction
material, operation schedules, HVAC systems) have been assumed
based on “archetypes”—templates representing groups of buildings
with similar properties—to reduce the number of input variables
[23,27]. In order to define “archetypes,” buildings are divided into
groups based on properties like shape and age where buildings within
each group are considered identical. While highly productive in redu-
cing the amount of input variables into an energy simulation model, the
characterization of “archetypes” is often ad-hoc and depends greatly on
the availability of data [11]. As a result, it is often difficult to evaluate
the reliability and authenticity of the results. New “hourglass” ap-
proaches [30,31] have begun to address some of the shortcomings of
archetype-based models as they combine reductive archetype models
with a re-diversification process in order to add stochastic variations to
individual buildings and re-introduce diversity lost in the reductive
archetype process. Moreover, reduced-order methods have also been
developed to model urban energy use, including electrical circuit ana-
logy based on resister-capacitor networks [32], energy demand calcu-
lations based on quasi-static monthly energy balance [33], degree-day
estimations based on heat transfer coefficient [30], steady-state
methods based on energy balance equations [17], thermal shoebox
models based on insolation analysis and clustering [28] and reduced-
complexity models based on simplified state space methods [34].
However, such reduced-order methods often require large over-
simplifications (e.g., a building is modeled as single thermal zone) [28]

1 The short version of the paper was presented at ICAE2017, Aug 21–24, Cardiff, UK.
This paper is a substantial extension of the short version of the conference paper.
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