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H I G H L I G H T S

• Techno-economic model analyzing profitability of PV-battery systems.

• Heterogeneity analysis based on 4190 real-world load profiles.

• Predictor for optimal PV-battery system configuration for individual households.

• Large variance in profitability, even for households with comparable annual demand.

• Good prediction accuracy with only one month of smart-meter data.
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A B S T R A C T

Technical advances and decreasing costs of photovoltaic (PV) and battery (B) systems are key drivers for the
consumer-prosumer transition in many countries. However, the installation of a photovoltaic-battery (PVB)
system is not equally profitable for all consumers. This study systematically assesses how heterogeneity in real-
world electricity load profiles affects the optimal system configuration and profitability of PVB systems. To that
end, we develop a techno-economic simulation model that optimizes the PVB configuration for given electricity
load profiles. The analysis uses real-world energy consumption data from 4190 households and is conducted for
current electricity rates and weather conditions in Zurich, Switzerland. To account for future price reductions of
PV and PVB systems, we conduct a sensitivity analysis that assesses how different cost scenarios influence
optimal system configuration and profitability. Finally, we develop and validate a machine learning algorithm
that can predict system profitability based only on a limited set of features and on shorter measurement time-
frames of smart-meter data. We find that under the current cost scenario (PV: 2000 €/kWp, B: 1000 €/kWh) and
without subsidies, about 40% of the analyzed households reach a positive net present value (NPV) for a PV-
system, but only for 0.1% of households is the integration of a battery profitable. Under the most optimistic cost
scenario for both technologies (PV: 1000 €/kWp, B: 250 €/kWh), 99.9% of the households benefit from the
integration of battery storage into their optimal system configuration, with a mean installed PV power of
4.4 kWp and a mean battery size of 9.6 kWh. In all cost scenarios, system profitability varies considerably be-
tween households, even for households with comparable total annual demand, primarily due to the hetero-
geneity in the load profiles. Thus, being able to identify households for whom the installation is profitable is
important. The proposed machine learning algorithm predicts optimal configuration, profitability, self-suffi-
ciency, and self-sufficiency ratios with good accuracy, even when only relatively short timeframes of smart-
meter data are available. The results of this study are relevant for households making individual investment
decisions as well as for utility companies to more effectively identify and approach relevant customers for the
installation of PVB systems. Furthermore, the findings enable policymakers to determine the critical levers for
increasing private investments into PVB systems in their region and to predict how future developments like
component costs will affect the future diffusion of these systems.
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1. Introduction

Many countries have put forward ambitious targets to increase the
share of energy they generate from renewable sources. For instance, the
Energy Roadmap 2050 of the European Commission foresees an almost
emission-free electricity production in Europe by 2050 [1]. Photo-
voltaic (PV) systems, which are seen as a cornerstone of these plans,
have recently experienced a considerable increase in market diffusion
in many countries. Spurred by a rapid price decline with prices for
residential PV system falling by over 80% from 2008 to 2016 in most
competitive markets [2], solar PV represented almost half of newly
installed renewable power capacity in 2016 [3]. As a result, global PV
deployment increased from 3.7 GW in 2004 to more than 300 GW at the
end of 2016 [4].

Small-scale PV systems on residential or commercial buildings ac-
count for about a third of the globally installed PV capacity and gen-
eration [5,6]. Owners of small-scale PV systems can either inject the

electricity produced into the distribution grid at a feed-in tariff, or self-
consume it to cover the building’s electricity demand. Adding on-site
battery (B) storage to PV systems makes it possible to store PV-pro-
duced electricity for later use. Similar to the declining costs of PV
modules, the price of lithium-ion batteries has also started to decrease
substantially and is expected to follow a similar price decline as that
seen for PV panels [7–9]. In particular, for consumers whose production
and demand times do not correspond, the addition of battery storage
increases the self-consumption ratio (SCR) – the ratio of electricity
generated by the PV system that is directly used at the installation site
to the total amount of electricity generated [10]. When the generation
cost of PV and battery-supplied electricity is below the retail price, self-
consumption is favorable from an owner’s perspective. In most regions,
the remuneration for feeding electricity into the grid was gradually
reduced and many policymakers push to remove feed-in tariffs [11].
Consequently, self-consumption has become increasingly attractive in
many countries over the past few years due to increasing electricity

Nomenclature

Abbreviations

B battery
DoD depth of discharge (–)
DoF degrees of freedom
EoL end of life
FiT feed-in tariff
MAE mean absolute error
ML Machine Learning
MPP maximum power point
NPV net present value (€)
PDR production to demand ratio (–)
PV photovoltaic
PVB photovoltaic-battery
SCR self-consumption ratio (–)
SDR storage to demand ratio (–)
SSR self-sufficiency ratio (–)
STC standard testing conditions ( =T 25STC °C, =G 1.0STC kW/m2)
TMY typical meteorological year

Greek symbols

αI temperature coefficient of current at STC (%/K)
αV temperature coefficient of voltage at STC (%/K)

tΔ time step (s)
δ PV technology coefficient (–)
ηc battery charging efficiency (–)
ηd battery discharging efficiency (–)
ηinv inverter efficiency (–)
σCL effective fraction of battery capacity usable due to cycle

life degradation (–)
Ωx sampling distribution for xDoF

Symbols

Am module surface area (m2)
C0 investment costs (€)
Ci costs in year i (€)
cbat specific battery system costs (€/kWh)

☆cbat replacement cost of battery (€/kWh)
cpv specific PV system costs (€/kWp)
crem feed-in remuneration (€/kWh)

high tariff electricity cost (€/kWh)
clt low tariff electricity cost (€/kWh)

Ebat battery charging state (kWh)
Ebat

max upper bound charging state (kWh)
Ebat

min lower bound charging state (kWh)
Ebat

R rated battery capacity (kWh)
G total in plane radiation (kW/m2)
GSTC in plane radiation under testing conditions (1 kW/m2)
IMPP module current at MPP (A)
IMPP,STC module current at MPP and STC (A)
ISC short circuit current of PV module (A)
ISC,STC short circuit current of PV module at STC (A)
L snippet length (days)
N number of load profiles/households
Nc number of cycles before EoL is reached
NT time horizon (years)
PDC DC power of all PV modules (kW)
PDC N, m DC power of a PV module (kW)
PL load (kW)
r discount rate (–)
Ri revenues in year i (€)
resc escalation rate on electricity prices (–)
rrem annual reduction rate for feed-in remuneration rate (–)
rom share of C0 that accounts for operation and maintenance

cost (–)
Tamb ambient temperature (°C)
tht daily high tariff hours
tlt daily low tariff hours
Tm module temperature (°C)
VMPP module voltage at MPP (V)
VMPP,STC module voltage at MPP and STC
VOC open circuit voltage of PV module (V)
VOC,STC open circuit voltage of PV module at STC (V)

→WB L energy supplied to load from the battery bank (kWh)
→WG L energy supplied to load from the grid (kWh)

WPV energy (DC) produced by the solar panels (kWh)
→WPV B energy supplied to battery from the PV modules (kWh)
→WPV G energy supplied to grid from the PV modules (kWh)
→WPV L energy supplied to load from the PV modules (kWh)

WL annual energy demand (kWh)
wL daily average electricity demand (kWh)

̂wL normalized daily average electricity demand (–)
w t( )L i daily average electricity demand during hour i (kWh)

̂w t( )L i normalized daily average electricity demand during hour i
(–)

xDoF degree of freedom vector P E( , )bat
R
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