Contents lists available at ScienceDirect

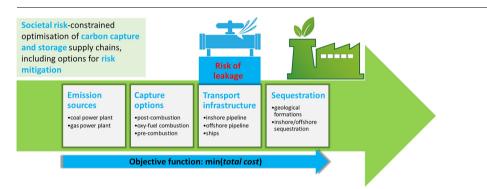
Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Economic optimisation of European supply chains for CO_2 capture, transport and sequestration, including societal risk analysis and risk mitigation measures

Federico d'Amore^a, Paolo Mocellin^b, Chiara Vianello^b, Giuseppe Maschio^b, Fabrizio Bezzo^{a,*}

^a CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy
^b Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy


HIGHLIGHTS

GRAPHICAL ABSTRACT

- A model for optimising the European carbon capture and sequestration (CCS) is proposed.
- Societal risk analysis is incorporated within the CCS model.
- Risk mitigation measures are included as options for local risk reduction.
- Scenarios assessing different risk definitions and policies are implemented.
- Societal risk does not affect CCS costs significantly, but limits the sequestration potential.

ARTICLE INFO

Keywords: Supply chain optimisation Carbon capture and storage Societal risk analysis Risk mitigation measures Hazardous CO₂ transport

ABSTRACT

European large stationary sources are currently emitting more than 1.4 Gt of CO_2 every year. A significant decrease in greenhouse gases emissions cannot be achieved without carbon capture and sequestration (CCS) technologies. However, although being practiced for over 30 years, CO_2 transportation is intrinsically characterised by the risk of leakage. This study proposes to assess and tackle this issue within the CCS design problem, by proposing a spatially explicit mixed integer linear programming approach for the economic optimisation of a European supply chain for carbon capture, transport and geological storage, where societal risk assessment is formally incorporated within the modelling framework. Post-combustion, oxy-fuel combustion and pre-combustion are considered as technological options for CO_2 capture, whereas both pipelines (inshore and offshore) and ships are taken into account as transport means. Both inland-inshore and offshore injection options are available for carbon geological sequestration. Risk mitigation measures are considered in the design of the transport network. The overall supply chain is economically optimised for different minimum carbon reduction scenarios. Results demonstrate that accounting for societal risk may impact the overall carbon sequestration capacity, and that the proposed approach may represent a valuable tool to support policy makers in their strategic decisions.

* Corresponding author. E-mail address: fabrizio.bezzo@unipd.it (F. Bezzo).

https://doi.org/10.1016/j.apenergy.2018.04.043

Received 13 February 2018; Received in revised form 7 April 2018; Accepted 22 April 2018 0306-2619/ © 2018 Elsevier Ltd. All rights reserved.

Nomenclature		
Acronyms		
CCS	carbon dioxide capture and storage	
IDLH	immediately dangerous to life or death	
LC50	lethal concentration 50%	
MILP	mixed integer linear programming	
MIP	mixed integer programming	
SC	supply chain	
30	supply chain	
Sets		
g	European region{1, 2,, 123, 134}	
ĥ	hazardous incident{i, ii, iii, iv}	
k	capture technology { $post_{coal}^{comb}$, $post_{gas}^{comb}$, oxy_{coal}^{fuel} , pre^{comb} }	
1	transport mode{inshore pipeline, offshore pipeline, ship}	
т	mitigation option{none, marker tape, concrete slabs, deep	
	burying, surveillance}	
р	transport capacity{1, 2, 3, 4, 5, 6, 7}	
•		
Paramete	ers	
Α	area of the hole	
α	European minimum carbon quota to be captured [%]	
b(x)	half-width of the section [m]	
CCR^{seq}	capital cost rate for injection well	
C_d	release hole of discharge [0.61]	
d_g	average injection well depth in region g [km]	
γ	viscosity correction factor [1.00]	
Yg,k	ratio of coal- and gas- fired power plants in region g for	
	capture technology k to be employed	
f^{ship}	cost factor for ship transport [ℓ /t of CO ₂ /km]	
g_c	gravitational constant [m/s ²]	
int ^{cost}	cost for intra-connection within cell $g [\epsilon/t \text{ of } CO_2/km]$	
LD_g	size of cell g [km]	
$LD_{g,g'}$	matrix of distances between region g and g' [km]	
L_h	liquid release distance of hazard h [km]	
μ	average failure rate [faults/year]	
m_1	cost parameter for injection well $[\in]$	
m_2	cost parameter for injection well $[\in]$	
$MF_{m,l}$	mitigation factor of measure m on mode l [%]	
η_k	capture efficiency for technology k [%]	
off_g	additional cost of offshore injection well	
OM^{seq}	maintenance rate for injection well	
P_{atm}	atmospheric pressure [kPa]	
Pd _g	population density in region g [people/km ²]	
$\overline{Pd}_{g,g'}$	average population density between region g and g'	
	[people/km ²]	
Pf _{h,l}	probability of hazard h on mode l [events/km]	
P_g	population in region g [people]	
$P_{g'}$	population in region g' [people]	
Pmax _g	amount of anthropogenic CO_2 that is generated in region <i>g</i> [t of CO_2]	
Q_p	transported capacity discretisation according to set p [t of CO_2]	
<i>ρι,co2</i>	liquid density of CO ₂	
SR_g^{max}	maximum societal risk in region g [events]	
$S_y(x)$	lateral dispersion parameter [m]	
$S_z(x)$	vertical dispersion parameter [m]	
$Stot_{max}^{CO2}$	maximum capacity of each injection well [t of CO_2]	

terraing	Terrain factor in region g	
UCC_k	unitary capture cost for technology $k \ [\pounds/t \text{ of } CO_2]$	
$UMC_{m,l}$	unitary mitigation cost for measure m through mode l	
UMC _{m,1}	$[\epsilon/km]$	
$UTC_{p,l}$	unitary transport cost for size <i>p</i> through mode $l \in /t$ of	
.,	CO ₂ /km]	
Continuous variables		
$\alpha^{stability}$	stability factor	
c(x, y, z)	vapour concentration at ground level [ppm]	
$c_c(x)$	centreline ground-level concentration of CO ₂ [ppm]	
$Ctot_{k,g}^{CO2}$	carbon capture through <i>k</i> in region <i>g</i> at time period <i>t</i> [t of	
	CO ₂]	
\dot{m}_{CO2}	discharged flowrate of CO ₂	
N_g^{seq}	number of injection wells in region g	
P	operative pressure of the pipeline [kPa]	
P_t	failure probability based on Poisson distribution of rare	
- [events	
$Ptot_{k,g}^{CO2}$	processed CO_2 through technology k in region g [t of CO_2]	
$Q_{g,l,g'}^{CO2}$	carbon flowrate transported from g through l to g' [t of	
₹g,l,g′	CO_2	
0.002	carbon flowrate of size <i>p</i> transported from <i>g</i> through <i>l</i> to g'	
$Q^{CO2}_{p,g,l,g^{\prime}}$		
D '	$[t \text{ of } CO_2]$	
Ri	Richardson dimensionless number	
R _t	reliability based on Poisson distribution of rare events	
Sh ^{inter} , h,g,g'	surface affected by hazard h between region g and g' [km ²]	
$Sh_{h,g}^{intra}$	surface affected by hazard h in region g [km ²]	
SR_g	total societal risk in region g [events]	
SR_g^{inter}	societal risk in region g produced by inter-connection	
	systems [events]	
$SR_{g^{\prime}}^{inter}$	societal risk in region g' produced by inter-connection	
8	systems [events]	
SR_g^{intra}	societal risk in region g produced by intra-connection	
0	systems [events]	
$SR_{p,g,l,g^{'}}^{inter}$	local societal risk produced by flowrate <i>p</i> transported from	
<i>p</i> ,g,ı,g	g through <i>l</i> to g' [people events]	
$SR_{g,l}^{intra}$	local societal risk for intra-connection within region g	
8,1	through mode <i>l</i> [people-events]	
$Stot_g^{CO2}$	carbon sequestered in region g [t of CO ₂]	
TCČ	global total capture cost [€]	
TSC	global total sequestration cost [€]	
TTC	global total transport cost [€]	
TTC^{dist}	scale effect of transport distance on total transport cost $[C]$	
TTC ^{intra}	effect of intra-connection cost on total transport cost $[C]$	
TTC^{m}	total cost for installing mitigation measures [€]	
TTC_{inter}^{m}	total cost for mitigation on inter-connection systems [€]	
TTC_{intra}^{m}	total cost for mitigation on intra-connection systems $[\mathbf{c}]$	
TTC^{size}	scale effect of transport size on total transport cost $[\mathbb{C}]$	

Binary variables

$\delta^{inter}_{m,p,g,l,g'}$	1 if mitigation m is applied on flowrate p from region g
1.66	through <i>l</i> to g', 0 otherwise

 $\delta_{m,g,l}^{intra}$ 1 if mitigation *m* is applied on intra-connection within region *g* through *l*, 0 otherwise

- $\lambda_{p,g,l,g'}$ 1 if flow rate *p* is transported from region *g* through *l* to *g'*, 0 otherwise
- Y_g 1 if a capture infrastructure is installed in region g, 0 otherwise

Download English Version:

https://daneshyari.com/en/article/6680060

Download Persian Version:

https://daneshyari.com/article/6680060

Daneshyari.com