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a b s t r a c t

The onset of natural convection in a vertical porous cylinder saturated by a fluid is studied. The lateral
confinement of the porous cylinder is due to an external porous medium having a permeability much
smaller than that of the cylinder. Thus, the vertical side boundary of the cylinder is permeable and
constrained by given pressure and temperature distributions. The lower and upper plane boundaries of
the cylinder are impermeable walls. The lower wall is subject to a uniform heat flux, while the upper wall
has a uniform temperature. The basic motionless state displays a uniform and vertical temperature
gradient oriented downward. The linear stability analysis is carried out by using an analytical dispersion
relation. The allowed modes of perturbation are determined as solutions of the HelmholtzeDirichlet
problem. First, the natural convection problem is formulated for a circular cylinder. Then, the investi-
gation is generalised to an arbitrary cross-sectional shape of the cylinder. The sample case of an elliptical
cylinder is studied in detail, by adopting an analytical solution based on Mathieu functions.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

Natural convection in fluid saturated porous media is a phe-
nomenon with important upshots relative to several applications,
ranging from geophysics and planetary science to heat transfer
engineering. Hot groundwater flows and lava flowsmay be induced
by natural convection, while this type of convection may come
about as a side-effect in the operation of heat exchangers where a
porous medium, such as a metal foam, is employed to enhance the
heat transfer.

Generally speaking, conditions for the onset of natural convec-
tion cells in a porous medium can be determined whenever a
vertical temperature gradient oriented downward is established
across the medium. This physical setup is usually denoted as
heating-from-below, and represents the core of the so-called Ray-
leigheB�enard convection in a porous medium. Several surveys of
the existing literature on this topic are currently available [1e4].
Interesting experimental results on this topic have been obtained
by Shattuck et al. [5] and by Howle et al. [6]. The features of the
natural convection process arising in a RayleigheB�enard system,

involving a saturated porous medium, are strongly influenced by
the form of the temperature and velocity boundary conditions
prescribed at the upper and lower boundaries. Moreover, also the
geometry of the vertical sidewall confining the system, and the
boundary conditions thereof, are definitely very important.

Linear stability analysis of a RayleigheB�enard porous medium is
appropriate to determine the threshold, or onset, conditions that
may turn a stable, motionless, basic state into a flow state, where
natural convection cells set in. Typically, the onset condition is
formulated as the Rayleigh, or Darcy-Rayleigh, number being larger
than a given critical value. This value is 4p2 for a saturated porous
layer with infinite horizontal width, modelled through Darcy's law,
and bounded by isothermal and impermeable walls. A smaller
critical value of the Rayleigh number, 27.1, is needed for the onset of
convectionwhen the lower bounding wall is kept at a uniform heat
flux instead of being isothermal [4]. A lateral confinement by ver-
tical sidewalls yields generally a critical value of the Rayleigh
number larger than expected when the porous layer has an infinite
horizontal width. In fact, a lateral confinement constrains the
possible modes of perturbation, so that neutrally stable modes
corresponding to the least possible Rayleigh number are available
in an unconfined porous layer, but they may be unavailable when
lateral vertical boundaries exist. This feature was recognised by
several authors [7e22], modelling the lateral confinement through
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different geometries: a rectangular box, a circular cylinder, and a
pair of coaxial circular cylinders.

In a recent paper [23], the lateral confinement of the porous
layer was modelled by permeable plane boundaries where the
pressure and temperature distributions are prescribed. That model
is further developed in the present paper by dealing with a cylin-
drical side boundary instead of a pair of plane boundaries. As in the
paper by Barletta et al. [23], we will assume the plane horizontal
boundaries to be perfectly impermeable. The lower boundary will
be considered as subject to a uniform heat flux, while the upper
boundary will be considered as isothermal. The combination of
isoflux/isothermal boundary conditions in the RayleigheB�enard
instability of a porous layer was examined by Nield [24]. This choice
is alternative to the usual RayleigheB�enard setup where both
boundaries are regarded as isothermal. Assuming a uniform heat
flux instead of a uniform temperature on the lower boundary may
be a closer representation of the actual conditions in an experiment
where the heating from below is supplied by means of an electric
resistance.

Our studywill first focus on a circular cylinder and then it will be
extended to a cylinder with a general cross-sectional shape. A
special attention will be devoted to an elliptical porous cylinder,
whose linear stability will be studied analytically by using Mathieu
functions to express the normal modes of perturbation.

2. Problem formulation

We aim to analyse the onset of natural convection in a vertical
porous cylinder, of height H and with circular cross-section of
radius a, saturated by a fluid. Cylindrical coordinates r¼ (r,q,z) are
employed, with the z-axis oriented vertically, as shown in Fig.1. The
seepage velocity is denoted by u¼ (u,v,w), where (u,v,w) are the
radial, angular and axial components, respectively.

2.1. The boundary conditions

Let us assume that the lower boundary, z¼ 0, is impermeable
and uniformly heated with a heat flux, q0, while the upper
boundary, z¼H, is impermeable and kept at a uniform constant
temperature, T0. Following the same assumptions adopted by Bar-
letta et al. [23], the side boundary at r¼ a is considered as perfectly
permeable and in perfect thermal contact with an external porous
reservoir. The reservoir, saturated by the same fluid contained in
the cylinder, is in a steady state with a vertical thermal stratifica-
tion. All details about the modelling of the side boundary can be
found in Barletta et al. [23]. An essential feature of the external
porous reservoir is that its permeability must bemuch smaller than
that of the porous medium contained in the cylinder. This
assumption serves to ensure that, when the Rayleigh number be-
comes sufficiently large for the onset of the instability in the porous
cylinder, its value is still subcritical in the external porous reservoir.

Nomenclature

a radius of the cylinder
A compact region in the plane (x,y)
c half focal distance, Eq. (24)
cen,sen even and odd Mathieu functions
vA boundary of region A
V2
2 two-dimensional Laplacian, Eq. (23)

e, o even, odd modes
ez unit vector along the z axis
fn,hn,fa,ha functions of z, Eqs. (11) and (21)
F function of x,y, Eq. (19)
g gravity acceleration, g¼� g ez
H height of the cylinder
J;< imaginary, real part
Jn Bessel function of the first kind and order n
k effective thermal conductivity
K permeability
m,n integers
p difference between pressure and hydrostatic pressure
q0 wall heat flux
Qa eigenfunctions, Eq. (21)
r,q,z cylindrical coordinates
R Rayleigh number, Eq. (4)
s aspect ratio, Eq. (4)
t time
T temperature

T0 reference temperature
u velocity, u¼ (u,v,w)
x,y Cartesian coordinates

Greek symbols
a wave number, Eqs. (11) and (21)
b thermal expansion coefficient
gn,ga exponential growth rate, Eqs. (11) and (21)
DT reference temperature difference
ε perturbation parameter, Eq. (9)
z parameter, Eq. (17)
h,x elliptical coordinates, Eq. (24)
8 effective thermal diffusivity
m dynamic viscosity
l parameter, Eq. (17)
x0 boundary value of x
r fluid density
s volumetric heat capacity ratio
4n function of z, Eq. (14)
c elliptic aspect ratio, c ¼ tanhx0

Subscripts and superscripts
^ perturbation fields, Eq. (9)
b basic solution
c critical value
ext external porous environment

Fig. 1. A sketch of the porous cylinder.
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