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HIGHLIGHTS

® A multistage inexact-factorial fuzzy-probability programming method is developed.

® It is capable of uncertainty reflection, policy analysis and interaction recognition.

® Results reveal that uncertainties remarkably affect Qingdao’s EPS long-term planning.

® Electricity demand and import-electricity expense have obvious effects on system cost.
® The EPS can be adjusted to a cleaner and safer pattern developing renewable energy.

ARTICLE INFO ABSTRACT

Keywords: A multistage inexact-factorial fuzzy-probability programming (MIFP) method is developed for optimizing
Electric power system electric power systems with cost minimization and environmental-impact mitigation. MIFP is capable of ad-
Environmental impact mitigation dressing parameter uncertainties presented as intervals/fuzzy-probability distributions and their interactions in
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a systematic manner over a multistage context; it can also quantitatively evaluate the individual and interactive
effects on system performance. The proposed MIFP method is then applied to planning electric power system for
the City of Qingdao, where multiple scenarios that emission-reduction target is designed as random variable and
electricity demand is specified as fuzzy-probability distribution over a long term are analyzed. Results reveal that
various uncertainties in system components (e.g., fuel price, electricity-produce cost, emission-mitigation option,
and electricity-demand level) have sound effects on the city’s future energy systems. High mitigation and high
demand correspond to decisions with considerable efforts for developing more renewable energies to reduce
pollutants and carbon dioxide emitted from fossil fuels. Results also disclose that the proportion of electricity
generated by coal would shrink with time to reduce the environmental negative impacts. The imported elec-
tricity would eventually drop as the local renewable energy capacity becomes capable of meeting the city’s
electricity demand. Through developing renewable energy, the city’s electric power system could finally be
adjusted towards a cleaner and safer pattern. Results also show that factors of electricity demand and import-
electricity expenditure have significant individual and/or joint effects on the system cost. The findings can not
only optimize electricity-generation and -supply patterns with a cost-effective manner, but also help decision
makers identify desired strategies for enhancing the mitigation of environmental impacts under uncertainty.

1. Introduction (EPS) still relies heavily on fossil fuel that contributes a large proportion
in greenhouse gas (GHG) and air pollutant emissions and brings about a

1.1. Motivation number of adverse environmental problems. According to the
International Energy Agency (IEA), electricity demand will grow >

Currently, one of the major aspects is that electric power system 70% by 2040 compared to 2013 [1,2]. In 2014, fossil fuels accounted
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Nomenclature
f=* the expected system cost over the planning horizon ($)
k electricity-conversion technology, with n =1 for coal-

fired power, 2 for gas-fired power, 3 wind power, 4 for
solar power, 5 for biomass power

Din probability level of electricity demand (low, medium and
high)

pmy probability of mitigation level (low and high)

q pollutant type, 1 for sulfur dioxide (SO,), 2 for nitrogen

oxides (NO,), and 3 for inhalable particles (PM;,)
t planning period, t =1, 2, 3,4, 5, 6

Okt emission coefficient of carbon dioxide (CO,) in electricity-
conversion technologies (103 tonne/GWh)

ntif,h power loss ratio from transmission line (%)

VGCY,  variable cost for generating electricity ($10%/GWh)

VECE, variable cost for expanding conversion technology k in
period t ($10%/GW)

CCAF CO,, recapture coefficient

MCE, allowed capacity expansion amount (GW)

AMR,;f[,q pollutant emission coefficients (10° tonne/PJ)

ARkift available resources (TJ)

CCO,;f, operation cost for CO,-treatment ($/ 10° tonne)

CEtf—'q pollutant emission cost ($10%/GW)

CP[,—'q pollutant control cost ($10%/TD)

CUE, electricity transmission cost in period t ($10%/GWh)

ECg;, expanded capacity for technology k in period t under
mitigation level f and demand level h (GW)

EDBj,  electricity demand (GWh)

EGA,;), electricity generation amount for technology k, period t,
mitigation level f and demand level h (GWh)

ESC* discharge limit of total CO, emission (10° tonne)

EStf—'q allowed amount of pollutant (10° tonne)

FEf, energy consumption rate of electricity-conversion tech-
nologies (TJ/GWh)

FECE, fixed cost for expanding capacity for electricity-conversion
technologies ($10%)

FGCE,  fixed maintenance cost for generating electricity ($10%/
GW)

PE ), imported electricity amount for period t, mitigation level f
and demand level h (GWh)

PECE, purchasing electricity resource cost ($103/TJ)

PEJE importing electricity cost ($10%/GWh)

RCE, residual capacity for electricity-conversion technologies
(GW)

STE, service time of electricity-conversion technologies (h)

SUZ financial subsidy ($10%/TJ)

YC, ;s 0-1 variable for electricity-generation

ZLg s, electricity consumption rate of each power plant (%)

for 81.1% of the world primary energy supply; while combustion of
such fuels is the primary source of anthropogenic GHG emissions [3].
The amount of carbon dioxide (CO,) emission was increased from 19.0
billion tons in 1981 to 34.7 billion tons in 2014, which would be ex-
pected to further increase by 85% within 2030 [4]. Since 2000, GHG
emissions have increased 2.4% a year reaching 49 GtCOxeq in 2010, out
of which 25% came from electricity and heat production [1,2].

As the leading contributor of GHG, electric-power sector is largely
driven by thermal technology throughout the world, generating over
one-third of the global energy-related CO, emissions [5]. China, as one
of the developing countries, encountered rapid growths in economy,
population and urbanization in the recent decades. All of these have
directly led to swift increases in primary energy and electricity demand,
with annual growth rates of 8.9% and 11.4% from 2000 to 2012, re-
spectively [6]. Air pollution in many cities caused by energy-related
activities becomes more and more serious and poses significant threats
to the public health [7]. As the environmental impact of fossil fuel
consumption and pollutants/GHG emissions become severe, developing
renewable energy to replace the traditional primary energy has risen to
the public concern.

Municipal EPS management strategy is therefore desired to establish
a resource efficient and low emission mode of urban governance to
answer the speedy urbanization, severe environmental pollution, and
climate change [8,9]. Many cities and regions design long-term plans to
mitigate the environmental impacts of EPS through raising the share of
renewable energies and developing efficient technologies. The Eur-
opean Union (EU) Member States have committed themselves to in-
crease the share of renewable energy in the EU’s energy mix to 20% and
reduce GHG emissions by 20% by 2020 [10]. China has also established
the target that CO, emission per unit of gross domestic product (GDP)
would be decreased by 40-45% of 2005 levels by 2020, and the share of
non-fossil energy in the total primary-energy consumption would in-
crease from 15% (by 2020) to 20% (by 2030) [11,12]. Realizing such a
target is a considerable challenge because fossil fuels with their high
carbon emissions dominate China’s energy mix [13]. The growth of
renewable energy in recent years has been driven by government-sup-
ported programs through subsidies, tax credits, and other incentives.

1.2. Literature review

Energy models, regularly based on simulation and optimization
techniques, can support strategic energy systems planning. Karavas
et al. [14] designed a multi-agent decentralized energy management
system for the autonomous polygeneration microgrid topology based on
computational intelligence approaches. Anvari-Moghaddam et al. [15]
proposed a multi-agent based energy management system for mon-
itoring and optimal control with various renewable energy resources
and controllable loads, where different agents were implemented to
cooperate with each other to achieve an optimal operating strategy.
Nojavan et al. [16] studied bilateral contracting and selling price de-
termination problems for an electricity retailer in the smart grid en-
vironment, where three cases including fixed pricing, time-of-use pri-
cing and real-time pricing with and without demand response program
were considered. Nevertheless, energy systems planning is subject to
important sources of uncertainty related to different variables (e.g.,
physical, technical, economic and environmental) and uncertainty is an
unavoidable component of such a procedure. There are significant un-
certainties in not only how the energy system might develop, but also in
how the system is expected to adjust when many system components
are altered (e.g., fuel price, emission amount, and conversion effi-
ciency) [17,18]. Renewable energies (particularly solar and wind) are
associated with high degree of uncertainty due to climatic conditions;
fuzzy and stochastic uncertainties may coexist in energy systems and
interact significantly within multiple spatio-temporal dimensions; at
the same time, pollutants and GHGs are generated by a variety of en-
ergy produce processes and activities, leading to pressure and risk to the
environment. A proper modeling and analytical treatment of these
uncertainties play a key role in taking operational and financial deci-
sions [19,20]. Effective reflection of these uncertainties and complex-
ities is critical for supporting the formulation of sound management
plans and analyzing various policies associated with energy conversion
and distribution.

In the past decades, efforts were made in dealing with uncertainties
in energy systems management through interval, stochastic and fuzzy
programs. Stochastic programming (SP) is an effective measure to ad-
dress probabilistic uncertainty, and the most commonly used approach
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