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H I G H L I G H T S

• A novel deep learning framework to forecast electricity prices is proposed.

• The framework leads to accuracy improvements that are statistically significant.

• The largest benchmark to date in electricity price forecasting is presented.

• 27 state-of-the-art methods for predicting electricity prices are compared.

• Machine learning models are shown to, in general, outperform statistical methods.
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A B S T R A C T

In this paper, a novel modeling framework for forecasting electricity prices is proposed. While many predictive
models have been already proposed to perform this task, the area of deep learning algorithms remains yet
unexplored. To fill this scientific gap, we propose four different deep learning models for predicting electricity
prices and we show how they lead to improvements in predictive accuracy. In addition, we also consider that,
despite the large number of proposed methods for predicting electricity prices, an extensive benchmark is still
missing. To tackle that, we compare and analyze the accuracy of 27 common approaches for electricity price
forecasting. Based on the benchmark results, we show how the proposed deep learning models outperform the
state-of-the-art methods and obtain results that are statistically significant. Finally, using the same results, we
also show that: (i) machine learning methods yield, in general, a better accuracy than statistical models; (ii)
moving average terms do not improve the predictive accuracy; (iii) hybrid models do not outperform their
simpler counterparts.

1. Introduction

Because of the liberalization of the electricity markets in the past
decades, the dynamics of electricity prices have become a complex
phenomenon with rare characteristics and important consequences. In
particular, when compared with other commodities, electricity trade
displays a set of attributes that are quite uncommon: constant balance
between production and consumption [1]; dependence of the con-
sumption on the time, e.g. hour of the day, day of the week, and time of
the year; load and generation that are influenced by external weather
conditions [2]; and influence of neighboring markets [3]. Due to these
characteristics, the dynamics of electricity prices have become very
complex, e.g. highly volatile prices with sudden and unexpected price
peaks [2].

In recent years, with the increasing penetration of renewable energy
sources (RES), the described behavior has aggravated. In particular,
while there are no questions regarding the contribution of RES to build
a more sustainable world, several concerns have been raised regarding
their influence on electricity prices and grid stability. More specifically,
as the penetration of RES increases, so does the dependence of elec-
tricity production w.r.t. to weather conditions and, in turn, the volati-
lity in electricity prices. This relation has been largely identified in the
literature: [4] studied the effect of wind power penetration on the New
England electricity market and concluded that price volatility increases
with increasing wind penetration. Similarly, [5] carried out a similar
study for the Texas market and also concluded that price volatility in-
creased with increasing wind penetration. Looking at the penetration of
solar power, [6] indicated that price spikes are expected to occur more
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frequently as the share of PV increases in the California system. Like-
wise, looking at the effect of increasing wind penetration in UK for the
year 2020, [7] reported that prices are expected to be more volatile
than at present.

Due to this effect, as the increasing integration of RES increases the
volatility of prices, the behavior of market agents becomes naturally
more unpredictable, sudden drops in generation and consumption are
more likely to occur, the imbalances between production and con-
sumption increase, and the electrical grid becomes more unstable.

In order to tackle the problems mentioned above, electricity markets
together with electricity price forecasting have become a central point
of research in the energy sector. In particular, by improving the fore-
casting accuracy, the negative effects of price uncertainty can be miti-
gated, the grid can be stabilized, and economic profits can be made.

1.1. Electricity price forecasting

The electricity price forecasting literature is typically divided into
five areas: (i) game theory models, (ii) fundamental methods, (iii) re-
duced-form models, (iv) statistical models, and (v) machine learning
methods [2]. Since statistical and machine learning methods have
showed to yield the best results [2], they are the focus of this review,
and in turn, of the benchmarking experiment that will be performed in
this paper.

Common statistical methods are: autoregressive (AR) and auto-
regressive with exogenous inputs (ARX) models [8], double seasonal Holt-
Winter (DSHW) models [9], threshold ARX (TARX) models [10], auto-
regressive integrated moving average (ARIMA) models [11,12], semi/non-
parametric models [8,13], generalized autoregressive conditional hetero-
scedasticity (GARCH) based models [14–16], or dynamic regression (DR)
and transfer function (TF) models [17]. In addition, hybrid versions of
the previous models are also common, e.g. wavelet-based models
[12,18,19].

A pitfall of statistical models is that they are usually linear fore-
casters, and as such, they might not perform good in data where the
frequency is high, e.g. hourly data with rapid variations. In particular,
while they show a good performance if the data frequency is low, e.g.
weekly patterns, the nonlinear behavior of hourly prices might become
too complicated to predict [20]. To address this issue and predict the
nonlinear behavior of hourly prices, different machine learning
methods have been proposed. Among them, multilayer perceptrons
(MLPs) [21–24], support vector regressors (SVRs) [25,26] and radial basis
function (RBF) networks [27] are the most commonly used.

While the academic literature comprises a much larger collection of
approaches, e.g. see [2,28], a complete review falls outside of the scope
of this paper.

1.2. Deep Learning

In the last decade, the field of neural networks has experienced
several innovations that have lead to what is known as deep learning
(DL). In particular, one of the traditional issues of neural networks had
always been the large computational cost of training large models.
However, that changed completely when [29] showed that a deep belief
network could be trained efficiently using an algorithm called greedy
layer-wise pretraining. As related developments followed, researchers
started to be able to efficiently train complex neural networks whose
depth was not just limited to a single hidden layer (as in the traditional
MLP). As these new structures systemically showed better results and
generalization capabilities, the field was renamed as deep learning to
stress the importance of the depth in the achieved improvements [30,
Section 1.2.1].

While this success of DL models initiated in computer science ap-
plications, e.g. image recognition [31], speech recognition [32], or
machine translation [33], the benefits of DL have also spread in the last
years to several energy-related applications [34–39]. Among these
areas, wind power forecasting is arguably the field that has benefited
the most: [34] shows how, using a deep belief network and quantile
regression, probabilistic forecasting of wind speed can be improved.
Similar to [34], [39] proposes a deep feature selection algorithm that,
in combination with a multi-model framework, improves the wind
speed forecasting accuracy by 30%. In the same area of research, [37]
proposes an ensemble of convolutional neural networks (CNNs) to obtain
more accurate probability forecasts of wind power.

In addition to wind power applications, DL has also shown success
in other energy-related fields. In the context of load forecasting, [36]
proposes a deep autoencoder in combination with an extreme gradient
boosting (XGB) model and shows how they forecast building cooling
load more accurately than alternative techniques; within the same re-
search paper, a deep neural network (DNN) to accurately forecast
building cooling load is also proposed. For a different application, [38]
proposes a DL model to detect islanding and to distinguish this effect
from grid disturbances; based on the obtained simulation results, [38]
indicates that the DL model can detect islanding with a very high ac-
curacy. In addition, [35] proposes a DL strategy for time series fore-
casting and shows how it can be used successfully to forecast electricity

Acronyms

AR autoregressive
ARIMA autoregressive integrated moving average
ARMA AR with moving average terms
ARX autoregressive with exogenous inputs
CNN convolutional neural network
DL deep learning
DM Diebold-Mariano
DNN deep neural network
DR dynamic regression
DSARIMAdouble seasonal ARIMA
DSHW double seasonal Holt-Winter
EPEX European power exchange
fARX full-ARX
fARX-EN fARX regularized with an elastic net
fARX-Lasso fARX regularized with Lasso
GARCH generalized autoregressive conditional heteroscedasticity
GRU gated recurrent unit
IHMARX Hsieh-Manski ARX

LSTM long-short term memory
MA moving average
MAPE mean absolute percentage error
MLP multilayer perceptron
RBF radial basis function
ReLU rectifier linear unit
RES renewable energy sources
RF random forest
RNN recurrent neural network
sMAPE symmetric mean absolute percentage error
SNARX smoothed nonparametric ARX
SOM-SVR SVR with self-organizing maps
SVR support vector regressor
TARX threshold ARX
TBATS exponential smoothing state space model with Box-Cox

transformation, ARMA errors, trend and seasonal compo-
nents

TF transfer function
WARIMA wavelet-ARIMA
XGB extreme gradient boosting
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