ELSEVIER

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

A simplified power consumption model of information technology (IT) equipment in data centers for energy system real-time dynamic simulation

Howard Cheung^a, Shengwei Wang^{a,b,*}, Chaoqun Zhuang^a, Jiefan Gu^{b,c}

- ^a Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- ^b Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- ^c School of Mechanical Engineering, Tongji University, Shanghai 201804, China

HIGHLIGHTS

- A power consumption model of IT equipment in data centers is built.
- It predicts how IT equipment design and operation change a data center's power consumption.
- It only needs data from the design of data center and manufacturer specification.
- It can be used in dynamic and real-time energy system simulation.

ARTICLE INFO

Keywords: Data center Energy consumption modeling Building simulation Energy efficiency

ABSTRACT

Due to the rapid rise of power consumption of data centers in recent years, much work has been done to develop energy-efficient design, controls and diagnosis of their cooling systems, while the energy system simulation is used as an effective tool. However, existing models of information technology (IT) equipment of data centers cannot well represent the effects of IT equipment design and operation status on the data center cooling demand, and this hinders the development of the energy saving cooling technologies of data centers. To address this issue, this paper introduces a power consumption model of IT equipment in data centers with coefficients and modeling script provided for immediate use in data center energy system simulation. This energy model can be used to simulate energy performance of typical IT equipment in data centers under real-time dynamic operation conditions conveniently and effectively without the need of data other than the specifications of a data center design and IT equipment manuals. Its use with a commonly used building simulation program is demonstrated with a building model of a typical large office in a subtropical area. The results show that the model can represent the change of power consumption of data centers with different IT equipment designs and operation appropriately.

1. Introduction

Energy consumption of data centers is increasing every year. In 2010, their electricity consumption was around 1.3% of the total of the whole world [1], and Shehabi et al. estimated their energy consumption would be tripled in a decade if the demand on their services continued to increase and their energy efficiency remained unchanged [2]. Since the top two energy consumers in data centers have been its information technology (IT) equipment and cooling systems and each consumes around 30% to 60% of total electricity use of the data centers [3–5], many researchers have developed technologies to reduce energy use of these two components in data centers rapidly in recent years [6–14].

Before applying these technologies to a design of a data center, one

needs to ensure that the technologies can provide sufficient cooling to maintain the reliability of operation of the data center. This is done by estimating the power consumption of its IT equipment and its cooling load. In the literature, the modeling is usually performed in three ways:

- Constant thermal load density model
- Using actual cooling data
- Detailed modeling of thermal load of IT equipment in data centers

Constant thermal load density model: Building engineers usually estimate the cooling load required in data centers based on their functions and the manufacturing year of the equipment as shown in Table 1 [15–17].

^{*} Corresponding author at: Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

E-mail addresses: hcheun@polyu.edu.hk (H. Cheung), shengwei.wang@polyu.edu.hk (S. Wang), chaoqun.zhuang@connect.polyu.hk (C. Zhuang), lavender.gu@polyu.edu.hk (J. Gu).

H. Cheung et al. Applied Energy 222 (2018) 329-342

Nomenclature		IP/MPLS	internet protocol/multiprotocol label switching layer
		IT	information technology
a_i	ith empirical coefficient [unit varies]	link	links between routers
C	network traffic load [Gbit/s or Gbps]	measured	measured
E	annual electricity consumption [kWh]	network	network equipment
LF	load factor	op	operating
N	number of data points	otn	optical transport network
P	power consumption [W]	predicted	predicted
Q	total cooling delivered in a year [kWh]	rat	rated capacity
S	average speed [MHz]	router	routers
T	time variable [s]	server	server
и	utilization rate [dimensionless]	supply	rated power supply
y	dependent variable of a model [unit varies]		
		Acronyms	
Subscript	s		
		COP	coefficient of performance
ac	air conditioning system	IP/MPLS	internet protocol/multiprotocol label switching
dist	power distribution	IT	information technology
сри	processor	OTN	optical transport network
dc	data center	PDU	power distribution unit
ethernet	the ethernet layer	PUE	power usage effectiveness
full	full capacity	UPS	uninterruptible power supply
idle	idle		

While energy system engineers can easily apply this method in their projects because the method does not require additional knowledge and information of the IT equipment in a data center, the method may overestimate the thermal load in the data center significantly and leads to oversizing of cooling equipment [18]. It also does not model the changes of power consumption of data centers due to the changes of operation statuses of the computing equipment [5,19], removing the possibility to design cooling systems and the related control systems to cope with these changes. In other words, the model does not allow optimal design and control of cooling systems in data centers.

Using actual cooling data: Studies have also shown that energy system engineers can use actual cooling load profiles of a data center to forecast its performance in the future [20] and to avoid oversizing of cooling equipment [21]. However, the designers can only use this approach after the operation of a data center begins, and they cannot use this method to design data center cooling systems that have not yet been operational.

Detailed modeling of thermal load of IT equipment in data centers: Multiple studies have also been conducted to examine the relationship between the thermal load of the IT equipment and their operating status, and they have discovered that the on/off status of the IT equipment and the utilization rate of the processors has a significant effect to their power consumption and hence the thermal load ([5,19,22–26]). To avoid overestimating the thermal load of a data center, engineers can model the effect of processor utilization rate and on/off status of equipment to the thermal load through detailed models of IT equipment (i.e. modeling servers, server fans, processors, memory, network, uninterrupted power supply (UPS) and power distribution units (PDUs) separately). While the mathematical models of the equipment are available [26–28], the models require detailed specification from each IT equipment or parameters beyond what are usually

Table 1Constant thermal load densities used in building simulation software [15–17]

Year of construction	Core data center (space full of server racks)	Server racks in a computer room (space with IT equipment and office desks)
Before 2014 After 2014	$646\mathrm{W/m^2}$ $484\mathrm{W/m^2}$	$232 \text{W/m}^2 \\ 215 \text{W/m}^2$

available in the specification. Since energy system engineers may not have sufficient understanding in these subjects, they need to work closely with IT engineers to use these models which seldom occurs in data center energy system design projects. Some of these models even require extra tests of equipment to define their inputs. There are other models that estimate power consumption based on workload of data and web traffic, but these models also require a variety of inputs such as web and data usage of servers that is difficult to be accessed by data center energy system engineers at the design stage of a data center [29–31]. Due to the difficulty to gather the inputs required by these models, these modeling approaches are rarely used for actual data center design.

The modeling approach may also need engineering judgement of the IT engineers on the operating status of the IT equipment and may be too subjective for engineering designs [32]. For example, IT engineers may use the power supply rating in the specifications of servers to estimate the maximum power consumption of the servers, but a study of server testing data of their actual maximum power consumption, as shown in Fig. 1, can easily show that the rating overestimates the power consumption.

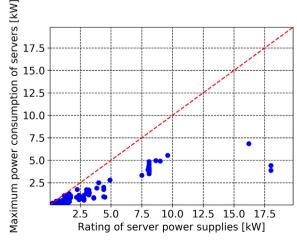


Fig. 1. Comparison of the maximum power consumption of servers and their power supply rating.

Download English Version:

https://daneshyari.com/en/article/6680214

Download Persian Version:

https://daneshyari.com/article/6680214

<u>Daneshyari.com</u>