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H I G H L I G H T S

• A two-stage stochastic program for optimal DES design under uncertainty is presented.

• Multiple sources of uncertainty are considered in the model.

• Probabilistic uncertainty scenarios are generated using statistical approaches.

• Cost-optimal DES designs are obtained for different CO2 limiting strategies.

• A comparison between stochastic and deterministic DES designs is provided.
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A B S T R A C T

Uncertainty introduces significant complexity to the design process of distributed energy systems (DES) and
introduces the risk of suboptimal decisions when the design is performed deterministically. Therefore, it is
important that computational DES design models are able to account for the most relevant uncertainty sources
when identifying optimal DES configurations. In this paper, a model for optimal DES design under uncertainty is
presented and is formulated as a Two-stage Stochastic Mixed-Integer Linear Program. As uncertain parameters,
energy carrier prices and emission factors, building heating and electricity demands, and incoming solar ra-
diation patterns are considered and probabilistic scenarios are used to describe their uncertainty. The model
seeks to make cost-optimal DES design decisions (technology selection and sizing) before these uncertain
parameters are known, while it also identifies the optimal operation of the selected DES configuration for
multiple uncertain scenarios. Moreover, two strategies for emission reduction are employed that set CO2 limits
either to the system’s average emissions under uncertainty (‘neutral’ strategy) or individually to the system’s
emissions for every possible uncertainty outcome to ensure a more robust emission performance (‘aggressive’
strategy).

To illustrate the model’s application, the design of a DES for a Swiss urban neighbourhood of 10 buildings is
investigated. Multiple optimal DES configurations are obtained by using the ‘neutral’ and ‘aggressive’ emission
reduction strategies and the trade-offs between the systems’ economic and emission performance are analysed.
Moreover, the optimal DES are contrasted in terms of technology selection and energy consumption shares
among fossil fuels, grid electricity and renewable energy. Finally, all model outputs are compared to results
obtained from a deterministic design model. The comparison showed that the deterministic model leads to
underestimations of the system costs and inaccurate estimates of the system’s CO2 emissions. Moreover, the
deterministic designs, in many cases, underestimate the renewable energy capacity that is required to meet the
imposed CO2 limits. These significant differences between the stochastic and the deterministic model results can
serve to confirm the shortfalls of deterministic design.
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1. Introduction

1.1. Background and previous work

Given the energetic importance of cities1 and the increasing urba-
nisation trends2, many of the global energy-related challenges are ex-
pected to be solved in an urban context. A promising avenue towards
creating sustainable cities lies in the transformation of the urban energy
supply with Distributed Energy Systems (DES) covering large shares of the
energy requirements of the urban building stock. DES are placed in
close proximity to the buildings whose energy demands they need to
cover, and typically accommodate multiple energy carriers, and energy
generation, storage and distribution technologies [3]. As a result of
their placement, DES can minimise energy distribution losses, while
they also allow the integration of locally available renewable energy
sources. An overview of DES alongside their economical, technical and
environmental advantages is given in [4–6].

The design of DES can be a challenging task though, given the nu-
merous available energy technologies to compose a DES, the need to
simultaneously cover multiple energy demand types (heating, elec-
tricity, cooling, etc.), and the multiple conflicting objectives involved in
DES design (e.g. economic, environmental, etc.). Therefore, designers
frequently rely on optimisation models to assist them with identifying
the DES technology portfolio that will optimise desired performance
criteria [7].

The worth of any computational model used in scientific and en-
gineering disciplines depends on how reliable and accurate its output is.
Any uncertainty in a model’s input parameters, due to either lack of
knowledge or inherent system stochasticity [8], can render its output
uncertain as well. In DES design, uncertainty can be traced to multiple
aspects, such as the stochastic nature of renewable energy and building
energy demands or the unknown evolution of energy carrier prices
during the DES lifetime. Overlooking uncertainty could lead to sub-
optimal DES designs that do not deliver the economic or environmental
performance for which they are designed. Nevertheless, in the majority
of studies DES design is still performed deterministically (e.g. [9–16]).

Uncertainty Analysis (UA) and Sensitivity Analysis (SA) are commonly
used to investigate uncertainty in a model. UA examines the output
variations given uncertain model inputs, while SA aims to identify the
uncertain parameters that act as the main drivers of the output varia-
tion. UA, for instance, can illustrate the variations of optimal DES de-
signs for different realisations of the uncertain parameters. Such an
investigation is valuable as it informs designers about the impacts of
uncertainty. However, it cannot identify a single DES design that will be
optimal against uncertainty. Therefore, decision-makers can find
themselves in a quandary about how to further proceed, especially in
the case that different designs emerge as optimal when alternative input
values are used.

Identifying an optimal DES design in the face of uncertainty can be
performed using techniques of Optimisation under Uncertainty (OU2)
[17]. Stochastic Programming (SP) is perhaps the most utilised OU2

method3, with its roots tracing back to the publication by Dantzig [19].
Stochastic Programs are mathematical programs, in which some of the
parameters are subject to uncertainty. The main premise of SP is that
probabilistic descriptions of the uncertain parameters are available (or
can be estimated), either in the form of probability distributions or as
scenarios with associated probabilities. The goal of the stochastic pro-
gram is to identify a policy that ensures feasibility for all (or almost all)
possible realisations of uncertainty, while optimising for a performance

measure that includes the decision and the uncertain parameters, e.g.
the expected or the worst-case performance. For a detailed overview on
SP we refer the reader to [20].

The two-stage stochastic program with recourse (two-stage SP) is the
most common stochastic program type. In a two-stage SP, decisions and
their associated variables are split in two groups, namely the first- and
the second-stage decision variables. The first-stage variables represent
“here-and-now” decisions, i.e. ones that need to be made before the
realisation of the uncertain parameters. After uncertainty is revealed, a
second set of decisions are made, called recourse or “wait-and-see” de-
cisions, which depend on the actual value of the uncertain parameters,
but also on the first-stage decisions.

The problem of optimal DES design under uncertainty can be sui-
tably accommodated in the decision-making structure of a two-stage
SP. DES design decisions (i.e. technology selection and sizing) are in-
cluded in the first-stage, as they need to be made before the actual
values of the uncertain parameters (e.g. building energy demands) are
known. On the other hand, DES operating decisions (i.e. when to gen-
erate, store, import and/or export energy) belong in the second-stage as
they only need to be made after uncertainty is revealed.

Multiple authors have adopted two-stage SP in studies investigating
DES design under uncertainty [21–28]. These studies have investigated
optimal DES design in various settings including residential buildings
and complexes [27,28], hospital buildings [21,22], and rural commu-
nities and cities [25,26]. These studies vary also in terms of the un-
certainty sources that they consider. For instance, Rezvan et al. [21]
considered only energy demand uncertainty, Zhou et al. [23], in addi-
tion to energy demands, considered solar and wind energy availability
as uncertain, while Yang et al. [22] considered uncertain energy de-
mands, energy carrier prices, and renewable energy (solar and wind)
availability. Finally, in all studies, the minimisation of the total DES
cost is included as the design objective. In most cases this was the only
objective used, but multi-objective formulations have also been used in
[27,28] to also investigate the minimisation of CO2 emissions and the
maximisation of renewable energy shares.

Please note that aspects, which are most often associated with sto-
chastic programming and optimisation under uncertainty, such as the
“two-stage optimisation” and the use of multiple scenarios, have also
been used in the context of deterministic DES design in [29,30]. In these
studies, the term two-stage is also used to differentiate between design
and operating decisions. However, unlike in two-stage stochastic pro-
gramming, these studies present a deterministic model, in which given
the availability of perfect information, the decisions in the two stages
are made at the same time. Regarding the second aspect, the models in
[29,30] also consider multiple scenarios for which the DES operation is
calculated; however, in this case, these scenarios correspond to re-
presentative days selected from within a single year and do not reflect the
uncertain nature of the model parameters like energy demands and
prices. This approach, in the literature, is mostly commonly referred to
as the “typical days” approach. The aim is to select a set of typical/
representative days from a single year that can represent the full yearly
horizon and reduce the model’s size and computational requirements.
Typical days have been used in multiple studies (e.g. [31–33]).

Besides DES design problems, the techniques of two-stage and
multi-stage stochastic programming have also been used in studies in-
vestigating optimal energy system operation under uncertainty
[34–47]. The decision structure of a two-stage stochastic program for
optimal energy system operation could, for instance, in the first stage,
involve day-ahead operation commitment decisions for the DES
equipment. The second-stage could then involve the real-time dispatch
decisions that need to be made according to the actual realisation of
uncertain energy demands, solar patterns, etc. For instance, Mohan
et al. [44] presented a two-stage SP for the optimal day-ahead energy
management of a DES with multiple renewable sources. Forecast un-
certainties for the day-ahead energy demand, wind and solar patterns
are considered, as well as uncertainty from generator outages. In

1 Cities today account for 64% of the global primary energy demand and for 70% of the
total energy-related CO2 emissions [1]

2 The percentage of urban population is projected to increase to 66% in 2050 from 54%
in 2014 [2]

3 Other methods for OU2 include Robust Optimisation, Fuzzy Programming, Interval
Programming, etc. For an overview see [17,18].
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