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H I G H L I G H T S

• Propose an artificial intelligence based dynamic pricing demand response algorithm.

• Reinforcement learning is used to illustrate the decision-making framework.

• Uncertainty of customer’s demand and flexibility of wholesale prices are achieved.

• Effects of customers’ private preferences in the electricity market are addressed.
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A B S T R A C T

With the modern advanced information and communication technologies in smart grid systems, demand re-
sponse (DR) has become an effective method for improving grid reliability and reducing energy costs due to the
ability to react quickly to supply-demand mismatches by adjusting flexible loads on the demand side. This paper
proposes a dynamic pricing DR algorithm for energy management in a hierarchical electricity market that
considers both service provider’s (SP) profit and customers’ (CUs) costs. Reinforcement learning (RL) is used to
illustrate the hierarchical decision-making framework, in which the dynamic pricing problem is formulated as a
discrete finite Markov decision process (MDP), and Q-learning is adopted to solve this decision-making problem.
Using RL, the SP can adaptively decide the retail electricity price during the on-line learning process where the
uncertainty of CUs’ load demand profiles and the flexibility of wholesale electricity prices are addressed.
Simulation results show that this proposed DR algorithm, can promote SP profitability, reduce energy costs for
CUs, balance energy supply and demand in the electricity market, and improve the reliability of electric power
systems, which can be regarded as a win-win strategy for both SP and CUs.

1. Introduction

Owing to the modern advanced information and communication
technologies in smart grid systems, demand response (DR) has become
an effective method for improving grid reliability and reducing energy
costs due to the ability to react quickly to supply-demand mismatches
by adjusting flexible loads on the demand side [1,2]. According to the
United States Department of Energy, DR refers to “a tariff or program
established to motivate changes in the price of electricity over time, or
to give incentive payments designed to induce lower electricity usage at
times of high market prices or when grid reliability is jeopardized” [3].

The existing literature generally discusses two categories of DR:
price-based and incentive-based [4]. Price-based DR motivates custo-
mers (CUs) to change their energy usage patterns in response to time-
varying electricity prices, while incentive-based DR provides fixed or

time-varying incentives to CUs if they reduce their energy consumption
during periods of power system stress [5]; both categories have their
own benefits and take advantage of different aspects of the potential for
flexible demand. This study focuses on price-based DR, whose efficiency
has been evaluated in several studies [6–9].

A number of studies have investigated the price-based DR, focusing
on directly controlling appliances to maximize the social welfare of the
smart grid systems from the CUs’ perspective. For example, in [10–12],
energy consumption scheduling of residential appliances was studied
considering time-of-use (TOU) pricing to reduce CUs’ costs and enhance
energy efficiency. Similarly, the work in [13] evaluated the impact of a
large-scale field deployment of mandatory TOU pricing on the energy
use of commercial and industrial CUs. In [14], the authors investigated
the DR of commercial and industrial businesses to critical peak pricing
plots where the time and duration of the price increase were
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predetermined. The works in [15–20] described a deterministic DR
model with day-ahead prices for CUs, wherein the next-day electricity
prices are known in advance and optimal energy consumption sche-
duling can be predefined though minimizing daily costs. In [21], the
authors proposed a day-ahead price-based and real-time incentive-
based strategy for large electricity CUs; however, the period and the
value of the incentive rate were assumed to be decided ahead of
schedule. In [22,23], two further price-based DR schemes were de-
signed for industrial loads, considering both current and future load
control in the schedule horizon; however, although the authors mod-
eled the future price uncertainty, the mathematical formulations in
these two papers were complex, and real-world implementation would
be cumbersome. Thus far, the majority of previous works on energy
consumption scheduling based on a given pricing policy, and cannot
accommodate uncertainties in the dynamic electricity market en-
vironment. Given this, it is imperative to devise an innovative dynamic
pricing DR mechanism for smart grid systems.

Dynamic pricing is a business strategy that adjusts the product price
in a timely fashion, to allocate the right service to the right CU at the
right time [24]. There have been several works on dynamic pricing DR
algorithms for smart grids. The study in [25] investigated a dynamic
pricing strategy with DR for a microgrid retailer in an integrated energy
system, where the retail rates and microgrid dispatch were formulated
as a mixed integer quadratic programming problem with the aim of
maximizing the retailer’s profit. In [26,27], Stackelberg games were
used to model energy trading between a retailer and CUs, where the
retailer determined the dynamic retail price based on the energy pricing
scheme to maximize profit, and then the CUs minimized their payment
bill by managing the energy usage of appliances according to the an-
nounced prices. More recently, another three works [28–30] proposed
the dynamic price-based energy management scheme between the re-
tailer and CUs. However, in these works, the dynamic pricing policies
deployed by the retailer were predetermined by abstract models (e.g.,
linear model) without logical process of determination. To some degree,
these studies are still deterministic and cannot react to the flexibility of
CUs’ demand profiles and wholesale electricity prices in the electric
power market.

From the above existing literatures, we can conclude that the energy
management system operation still relies on conventional ways such as
deterministic rules and abstract models (e.g., mix integer linear pro-
gramming), which mainly suffer two key criticisms: (a) applying de-
terministic rules for operating non-stationary system cannot guarantee
optimality, any changes of a variable may result in a loss of money and

(b) abstract models are usually approximations of the reality and
therefore might be unrealistic compared with real energy systems, since
the performance of the abstract model is strictly limited by the mode-
ler’s skill and experience. In recent years, with the rapid development of
artificial intelligence, there has been growing interest in adopting re-
inforcement learning (RL) to solve the decision-making problem in
smart grids. A number of breakthroughs in RL have been reported, in
particular, like deep Q-network in Atari[31] and AlphaGo [32]. RL is an
area of machine learning inspired by behaviorist psychology, concerned
with how software agents ought to take actions in a stochastic en-
vironment to maximize some notion of cumulative reward, as shown in
Fig. 1. An agent interacts with its environment in discrete time steps; at
each time step, the agent chooses an action from the set of available
actions, which is subsequently sent to the environment. Then the agent
receives a reward and the environment moves to a new state. The goal
of an agent is to collect as much reward as possible. In [33–38], RL
algorithms were used to schedule energy storage systems and obtain an
optimal charging/discharging policy, e.g., a battery or an electric ve-
hicle. This scenario is relatively easy for its limited space of actions and
states, and has thus been the focus of a number of papers. The studies in
[39–42] used RL to obtain energy scheduling for specific devices in DR,
e.g., electric water heaters, thermostatically controlled loads, or others.
In [43], the authors considered microgrids as a whole, with each mi-
crogrid having the capacity to buy or sell energy to another microgrid;
RL was used between the microgrids to choose a buying/selling strategy
for energy trading, to maximize the average revenue. Motivated by the
dominant and unique features of “no need of expert knowledge” and
“model-free”, RL is becoming one of the most promising tools to realize
optimal operation of energy management system in face of ever-chan-
ging ambient factors, e.g., dynamic electricity prices and energy con-
sumptions.

Nomenclature

Variables

et n, energy consumption of customer n at time slot t
Et n, energy demand of customer n at time slot t
et n

curt
, energy consumption of customer n at time slot t for cur-

tailable load
Et n

curt
, energy demand of customer n at time slot t for curtailable

load
et n

critic
, energy consumption of customer n at time slot t for critical

load
Et n

critic
, energy demand of customer n at time slot t for critical load

t index for time slot
n index for customer
λt n, retail electricity price for customer n at time slot t
πt wholesale electricity price at time slot t
φt n, dissatisfaction cost of customer n at time slot t
i index for iteration in Q-learning

Parameters

ξt elasticity at time slot t
αn customer preference parameter of dissatisfaction cost

function
βn predetermined paremeter of dissatisfaction cost function
Dmin lower bound of demand reduction at time slot t
Dmax upper bound of demand reduction at time slot t
κ1 coefficient of lower retail price bound
κ2 coefficient of upper retail price bound
ρ weighting factor between SP’s profit and CUs’ costs

Other symbols

DR demand response
RL reinforcement learning
SP service provider
CU customer
MDP Markov decision process
GO grid operator

Fig. 1. Reinforcement learning (RL) setup.

R. Lu et al. Applied Energy 220 (2018) 220–230

221



Download English Version:

https://daneshyari.com/en/article/6680249

Download Persian Version:

https://daneshyari.com/article/6680249

Daneshyari.com

https://daneshyari.com/en/article/6680249
https://daneshyari.com/article/6680249
https://daneshyari.com

