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H I G H L I G H T S

• Power balancing with a fully decen-
tralized framework.

• MAS with modified Independent
Learners approach for energy man-
agement of microgrid.

• MAS and Fuzzy Q-Learning for con-
tinuous states and actions space.

• Reinforcement Learning (Q-learning)
for Collaborative MAS.
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A B S T R A C T

This study proposes a cooperative multi-agent system for managing the energy of a stand-alone microgrid. The
multi-agent system learns to control the components of the microgrid so as this to achieve its purposes and
operate effectively, by means of a distributed, collaborative reinforcement learning method in continuous ac-
tions-states space. Stand-alone microgrids present challenges regarding guaranteeing electricity supply and in-
creasing the reliability of the system under the uncertainties introduced by the renewable power sources and the
stochastic demand of the consumers. In this article we consider a microgrid that consists of power production,
power consumption and power storage units: the power production group includes a Photovoltaic source, a fuel
cell and a diesel generator; the power consumption group includes an electrolyzer unit, a desalination plant and
a variable electrical load that represent the power consumption of a building; the power storage group includes
only the Battery bank. We conjecture that a distributed multi-agent system presents specific advantages to
control the microgrid components which operate in a continuous states and actions space: For this purpose we
propose the use of fuzzy Q-Learning methods for agents representing microgrid components to act as in-
dependent learners, while sharing state variables to coordinate their behavior. Experimental results highlight
both the effectiveness of individual agents to control system components, as well as the effectiveness of the
multi-agent system to guarantee electricity supply and increase the reliability of the microgrid.
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1. Introduction

1.1. Microgrids and control

For several decades, the power production is based on a central
system with large scale conventional power plants and extended power
transmission networks with lack in flexibility and extensibility [1].
Nowadays, the trend in power generation is changing and shifting to
the distributed power generation paradigm [2]. This new model allows
incorporation of new technologies with low or zero emission of gasses
which do not affect the environment [3].

Microgrids are usually low voltage networks with distributed power
generation units, storage devices and controllable loads [4]. They have
clearly defined electrical boundaries that act as single controllable en-
tities with respect to the grid [5]. Microgrids can operate in either grid-
connected or island-mode [6]. Their ability to operate in island-mode
makes them an ideal solution in remote areas, rural areas and islands
[7] where the grid expansion is either impossible or cost prohibitive
[8].

The ability of operating in grid-connected mode makes them an
efficient economic solution in power market [9]. Thus, microgrids are
exceptional infrastructure for serving the current trend of distributed
power generation [10–11]. On the other hand, despite the benefits
provided by the microgrid architecture there are some challenging
tasks. The most challenging task is the energy management of the mi-
crogrid. In grid connected mode, in many cases, the energy manage-
ment has to deal with economic problems. The schedule of the energy
storage and use has to be optimal, in order to maximize the economic
benefits under the dynamic prices of the electricity market.

In island mode, the main challenge is to guarantee electricity supply
and maintain (or increase) reliability of the microgrid under the un-
certainties which are introduced by the renewable power sources and

the stochastic demand of the consumers. This becomes even more
challenging when the number of renewable power sources and dynamic
loads increase [12]. A centralized management and control system
presents limitations, requiring distributed sources and loads to com-
municate their state to the central controller, while the control actions
have to be broadcasted back to each unit [13–14]. In doing so, given
components’ possible states, the number of global system states increase
exponentially to the number of components, which is also the case for
the combination of components’ control actions [15]. Additionally,
failure of the central controller decreases the reliability of the system.
The aforementioned limitations can be addressed by applying a de-
centralized control method. The computational load is shared among
the local controllers of each system components, while the reliability of
the system increases, since a failure in the local controller may not
affect the whole system’s performance [16]. A considerable benefit of
decentralized control is that new components may be added seamlessly
to the whole system, or existing components may be replaced with new
ones, given that their controllers satisfy information sharing require-
ments for the whole system to operate successfully.

1.2. Microgrid and multi-agent system (MAS)

A multi-agent system consists of a group of agents that interact with
each other and with their environment [17]. This system is ideal for
solving complex problems by factoring the problem to a number of
smaller and simpler ones that can be solved in more computational
efficient ways than using a single-agent system. Additionally, it pro-
vides solutions that respects the autonomy of components (e.g. each
component has different operating preferences, constraints, etc.). These
features make multi-agent systems ideal for solving energy manage-
ment problems [18].

MAS have been previously used by researchers to deal with the task

Nomenclature

MAS multi-agent system
FLS Fuzzy Logic System
Dm fuzzy set of inputs
c output variable of fuzzy rule
wi firing strength of rule i
(∩) intersection operator
a global output/action
Si fuzzy sets of state variables
η learning rate
R reward
q q-value of rule
AG set of agents
T state transition function
MDP Markov Decision Process
f weight function
pwt percentage water in the tank
ed water demand of electrolyzer (l/h)
PL demanded power of the variable electrical load (W)
RDA reward of desalination agent
SOC state of charge
PBC battery charge power (W)
RBAT reward of battery agent
pH2 percentage of hydrogen in the tank
dH2 demanded hydrogen of fuel cell (m3/h)
αbat control signal of the battery agent
PFC power produced by the fuel cell (W)
PDG power produced by the diesel generator (W)
DC Direct Current
V cumulative expected discounted reward

PV photovoltaic
RL Reinforcement Learning
x crisp input/state vector
E output fuzzy set defined by the expert
(∪) union operator
ai consequent/action of rule i
TSK Tagaki-Sugeno-Kang
Xi set of state variables
γ discount factor
FIS fuzzy inference systems
t set of discrete time points
A set of discrete actions
p transition probability
Q Q-function
ANFIS neuro fuzzy inference system
wd water demand (l/h)
PPV photovoltaic potential power production (W)
pbdesalination power balance for desalination agent (W)
Pdes power consumption of the desalination unit (W)
pb_Battery power balance for battery agent
PBD battery discharge power (W)
Lp percentage of the demanded power of the dynamic elec-

trical load
pb_Electrolyzer power balance for electrolyzer agent (W)
REA reward of electrolyzer agent
RFCA reward of fuel cell agent
RDG reward of fuel cell agent
MF membership function
Π policy
E expectation operator
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