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H I G H L I G H T S

• Novel MILP approaches to enable design of MES including seasonal energy storage.

• Good accuracy and much lower computational complexity compared to current approaches.

• Realistic Swiss case-study evaluated in terms of total annual cost and emissions.

• Extensive sensitivity analysis defining design guidelines for seasonal energy storage.
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A B S T R A C T

Optimal design and operation of multi-energy systems involving seasonal energy storage are often hindered by
the complexity of the optimization problem. Indeed, the description of seasonal cycles requires a year-long time
horizon, while the system operation calls for hourly resolution; this turns into a large number of decision
variables, including binary variables, when large systems are analyzed. This work presents novel mixed integer
linear program methodologies that allow considering a year time horizon with hour resolution while sig-
nificantly reducing the complexity of the optimization problem. First, the validity of the proposed techniques is
tested by considering a simple system that can be solved in a reasonable computational time without resorting to
design days. Findings show that the results of the proposed approaches are in good agreement with the full-scale
optimization, thus allowing to correctly size the energy storage and to operate the system with a long-term
policy, while significantly simplifying the optimization problem. Furthermore, the developed methodology is
adopted to design a multi-energy system based on a neighborhood in Zurich, Switzerland, which is optimized in
terms of total annual costs and carbon dioxide emissions. Finally the system behavior is revealed by performing a
sensitivity analysis on different features of the energy system and by looking at the topology of the energy hub
along the Pareto sets.

1. Introduction

Recently, the energy sector has been riding a wave of grand trans-
formation: the necessity of decreasing the environmental impact has led
to the deployment of conversion and storage technologies based on
renewable energy sources [1]. In this context, multi-energy systems
(MES) represent a new paradigm which exploits the interaction be-
tween various energy carriers (e.g. electricity and heat) at design and
operation phase, allowing for improved technical, economic and en-
vironmental performance of the system [2]. Within this framework,
seasonal storage systems have recently caught much attention due to
their ability to compensate the seasonal intermittency of renewable
energy sources [3]. However, compensating renewables fluctuations at

the seasonal scale is particularly challenging: on the one hand, a few
systems, such as hydrogen storage and large thermal storage, allow
offsetting seasonal variations in renewable energy generation; on the
other hand, the optimal design and operation is complicated by the
large number of decision variables, due to the required length and re-
solution of the time horizon.

Several works provide comprehensive reviews of the model for-
mulations and computer tools adopted for investigating MES and their
integration with renewable energy sources and storage technologies.
For instance, Alarcon-Rodriguez et al. focused on the multi-objective
planning of distributed energy resources [4]; Connolly et al. presented a
review of the computer tools implemented for analyzing the integration
of renewable energy into various energy systems [5], whereas Keirstead
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et al. [6] and Allegrini et al. [7] focused on urban energy system
models; Mancarella provided an overview of concepts and models for
the planning and analysis of multi-energy systems [2]. When storage
technologies are available, the optimal design of MES is significantly
complicated by the necessity to consider the system operation already
at design phase to accurately make use of the storage systems. Although
a few nonlinear approaches have been proposed, for instance by Elsido
et al. [8], mixed-integer linear programming (MILP) has been particu-
larly favored as optimization framework for MES design and operation
since it catches well the features of the system with a reasonable
computational complexity. The problem of optimal technology selec-
tion and unit commitment through MILP formulation has been ex-
tensively investigated in the past. For example, Marnay et al. presented

the case of a commercial building micro-grid with heat and electrical
storage [9]; Hawkes and Leach extended the study by considering a
hospital and residential buildings [10]. Later, Angrisani et al. in-
vestigated the energy, economic, and environmental performance of
micro tri-generation systems [11]. Fazlollahi et al. introduced methods
for multi-objective design of complex energy systems [12], and Ahmadi
et al. presented the thermodynamic modeling and multi-objective op-
timization of an energy system for the simultaneous generation of
electricity, heating, cooling and hot water [13]. Whereas these works
were mainly focused on small, yet centralized systems (i.e. one hub for
different end users), a number of studies also investigated energy dis-
tribution among the different nodes of decentralized energy systems
(i.e. multiple hubs for different end users). For example, Genon et al.

Nomenclature

A available area for solar installation (m2)
a binary variable for technology selection (–)
b binary variable for technology selection (–)
D number of design days (–)
d design day index
E stored energy (kWh)
e annual CO2 emission (ton /yrCO2 )
F input power (kW)
I solar radiation (kWh/m2)
i technology index
J annual cost (€/yr)
j carrier index
K length of the time horizon (hour of the day)
k time index (hour of the day)
L user demand (kW)
M set of available technologies
M number of available technologies (–)
N set of available carriers
P output power (kW)
Q thermal output power (kW)
S technology size (kW)
T length of the time horizon (hour of the year)
t time index (hour of the year)
U import power (kW)
u import price (€/kWh)
V export power (kW)
v export price (€/kWh)
w binary variable for capital cost calculation (–)
x binary variable for on/off status (–)
Y length of the time horizon (day of the year)
y time index (day of the year)

Greek letters

α efficiency coefficient (–)
β efficiency coefficient (–)
γ efficiency coefficient (kW)
Δ time variation (h)
δ size coefficient (–)
ε specific emission coefficient (ton /kWhCO2 )
ζ size coefficient (kW)
η conversion or storage efficiency (–)
Θ air temperature (°C)
θ cost coefficient (–)
κ size coefficient (–)
Λ storage loss coefficient (h−1)
λ cost coefficient (–)
μ cost coefficient (€)

ν size coefficient (kW)
Π storage loss coefficient (–)
ρ first principle-to-electrical efficiency ratio (–)
σ sequence of design days along the year (–)
τ storage charging/discharging time (h)

Subscripts

A subset of technologies
B subset of technologies
c capital cost
e electricity
g natural gas
h heat
m maintenance cost
o operation cost
S subset of technologies

Superscripts

A subset of decision variables
B subset of decision variables
int intermediate
max maximum
min minimum

Acronym

COP coefficient of performance
CS conventional scenario
edHP electricity-driven heat pump
FC fuel cell
FSO full scale optimization
HS hydrogen storage
HWTS hot water sensible thermal storage
LiB lithium battery
M0 method 0
M1 method 1
M2 method 2
MES multi-energy system
MGT micro gas turbine
MILP mixed integer linear program
NG natural gas
PEME proton exchange membrane electrolyzer
PEMFC proton exchange membrane fuel cell
PtG power to gas
PV photovoltaic
PWA piecewise affine
SOFC solid oxide fuel cell
TS thermal solar
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