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a b s t r a c t

The linear and nonlinear dynamics of convection in porous media heated from below and saturated by a
viscoelastic fluid are examined. Two geometrical configurations are considered. For infinite layer, it is
found that stationary structures (SS), traveling waves (TW) or standing waves (SW) can be stable at the
onset of convection, depending on the viscoelastic properties. For weakly viscoelastic fluids, we find that
SS are the preferred convective pattern. Otherwise, diluted polymers promote TW while concentrated
ones favors SW. The heat transfer associated to the three types of convective patterns are evaluated and
compared. For a square box, an amplitude equation is derived in the vicinity of the codimension-two
bifurcation point where both the stationary and oscillatory instabilities occur simultaneously. The dy-
namics associated with the interaction between the two kind of the instability is studied. In particular
when oscillatory convection appears first, we found that a secondary nonlinear transition to stationary
convection may occur. This prediction is in accordance with the few existing simulation results. Possible
connections between experiments and our findings are discussed.

© 2015 Elsevier Masson SAS. All rights reserved.

1. Introduction

The classic stability problem of convection in a porous medium
heated from below and saturated by a Newtonian fluid has been
extensively investigated in the past owing to its major importance
in many natural and practical applications (for detailed reviews, see
Nield and Bejan [1]). The instability of the conduction state occurs
as a result of the buoyancy effect due to heating. Stationary bifur-
cation takes place when the Rayleigh number, which is a dimen-
sionless measure of the temperature difference across the layer,
exceeds a critical value. Recently, there has been a continuously
increasing interest to the corresponding problem in the case of
viscoelastic fluids. The study of such fluids have applications in a
number of processes that occur in industry, such as the extrusion of
polymer fluids, solidification of liquid crystals, suspension solutions
and petroleum activities. In rheology, one crucial problem is the
formulation of the constitutive equations regarding viscoelastic
fluid flows in porous media. For a Darcy-Maxwell model, there is an
additional dimensionless parameter besides Ra, namely the relax-
ation number l1, which represents the stress relaxation time

produced by an elastic response to strain, scaled by the thermal
diffusion. The general model of Oldroyd-B includes a strain retar-
dation time as well as a stress relaxation time, thus introducing a
new dimensionless parameter l2. The competition between the
processes of stress relaxation, strain retardation and thermal
diffusionmay lead to either an oscillatory or a stationary convective
instability as the first bifurcation depending on the l1 and l2 values.

In most theoretical works [2e11] the porous layer is assumed to
be of infinite horizontal extent. In that case, weakly nonlinear
theory has been used by Kim et al. [2] and Zhang et al. [6] to study
the temporal evolution of standing waves at the onset of oscillatory
instability. With infinite horizontal porous cavity, traveling waves
are also possible. The question of whether standing or traveling
waves are preferred at onset has not been fully addressed. There-
fore, one of the objectives of the present work is to provide a full
investigation of the stability of standing and traveling waves near
the onset of oscillatory convection.

However since experiments can only take place in finite con-
tainers, the comparison between theoretical and experimental re-
sults is not always an easy task as sidewalls play an important role
in small porous boxes. From the linear point of view, stability
analysis of the problem of two dimensional convection in a boun-
ded porous cylinder [12] and in rectangular porous containers [13]
showed that the spatial horizontal pattern of the convective cells is
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no longer degenerate as in infinite layers but is determined by the
lateral confinement of the sidewalls. As far as the authors are aware,
the numerical investigation of convection in a porous square box
saturated with viscoelastics fluids conducted in Ref. [4] is the only
published paper focusing on the evolution of flow bifurcations and
heat transport at high DarcyeRayleigh numbers. For some combi-
nations of the relaxation and retardation times, these numerical
simulations reveal that in the region of viscoelastic parameters
where the oscillatory instability develops first, the system may
undergo a secondary nonlinear transition to stationary patterns.
Consequently the heat transport estimated by the Nusselt number
is drastically modified in the supercritical region where the system
exhibits this secondary bifurcation. It is interesting to recall that
this kind of nonlinear transition from oscillatory patterns to sta-
tionary ones was also observed in experiments conducted by
Kolodner [14] who examined the convection of buffer solutions of
long DNA suspensions in an annular fluid cavity.

In the present paper, we propose a bifurcation analysis moti-
vated by a desire to shed new light on the numerically [4] or
experimentally [14] observed convective patterns transition. We
demonstrate that the proximity of oscillatory and stationary in-
stabilities near the codimension two (CT) point may lead to their
interaction such that the resulting temporal convective pattern
may significantly differ from the patterns that would appear far
from the CT point. We proceed by reconsidering linear stability
analysis in a square porous cavity in order to locate on the para-
metric space the CT point where both the steady and Hopf bi-
furcations occur simultaneously. In the vicinity of this point we
reduce the full dynamic equations describing the system to time-
dependent amplitude equation which allows one to study the
nonlinear interaction between the two kind of the instability.

2. Linear analysis

We consider a isotropic and homogeneous bounded three-
dimensional porous layer of height H and horizontal rectangular
section with dimensions aH and bH, in which b≪1. The porous
medium is saturated by an Oldroyd-B fluid and we assume that the
solidmatrix is in local thermal equilibriumwith the fluid. The lower
and upper horizontal impermeable walls are kept at constant
temperatures T�

0 and T�
1 ð< T�0Þ respectively, while the four vertical

walls are considered impermeable and adiabatic. We use the Darcy
law extended to viscoelastic fluids to describe momentum transfer
andwe assume that the Oberbeck Boussinesq approximation holds.
As in Refs. [10], we choose H, H2(rc)sf/lsf, T�

0 � T�1, lsf/(H(rc)f), and
lsfmf/(K(rc)f) as reference quantities for length, time, temperature,
filtration velocity, and pressure. With this scaling, the following set
of dimensionless perturbation (around the conduction state)
equations is obtained:

V$ u!¼ 0 (1)

�
1þ l2

v

vt

�
V2w� Ra

�
1þ l1

v

vt

�
V2
hq ¼ 0 (2)

vq

vt
�wþ ð u!$VÞq� V2q ¼ 0 (3)

where V2
h is the horizontal laplacian, and the dimensionless pa-

rameters are: the filtration Rayleigh number
Ra ¼ ðKaf gHðT�0 � T�

1ÞðrcÞf Þ=ðlsf nÞ, the relaxation time
l1 ¼ ðl�1lsf Þ=ðH2ðrcÞsf Þ and the retardation time
l2 ¼ ðl�2lsf Þ=ðH2ðrcÞsf Þ. The rheological model for viscoelastic
fluids, such as a polymeric solution composed of a Newtonian

solvent and a polymeric solute of viscosities ms and mp respectively
yields G¼ l2/l1¼ ms/(ms þ mp) [15]. The ratio Gmay also be used as a
parameter instead of l2.

Here, af, lsf, (rc), K, and mf are respectively the thermal expansion
coefficient, the thermal conductivity, the heat capacity per unit
volume, the permeability of the porous medium, and the dynamic
viscosity of the fluid. Subscript (sf) refers to an effective quantity.
The physical boundary conditions of the velocity field read

w ¼ 0 at z ¼ 0;1; u ¼ 0 at x ¼ 0; a; and v ¼ 0 at y ¼ 0; b:
(4)

and for the fluctuations of temperature we consider the boundary
conditions

q ¼ 0 at z ¼ 0;1;
vq

vx
¼ 0 at x ¼ 0; a; and

vq

vy
¼ 0 at y ¼ 0; b:

(5)

In the case where b≪1, the stability problem can be simplified
into a two-dimensional one [13].

2.1. Extended cavity

If the porous cavity is supposed infinite in horizontal extent
ða[1Þ, the two-dimensional infinitesimal perturbations verifying
the boundary conditions can be expressed as usual in normal
modes

w ¼ w1sinðpzÞexpðikxþ stÞ
u ¼ u1cosðpzÞexpðikxþ stÞ
q ¼ q1sinðpzÞexpðikxþ stÞ

(6)

where k is the wave number and s ¼ sr þ iu2ℂ. The real sr is the
temporal growth rate, while u represents the frequency of the os-
cillations. Therefore the neutral temporal stability curve is obtained
for sr¼ 0 which selects dominantmodes at the onset of convection.

Substitution of (6) into the linearized version of (1)e(3) leads to
the following dispersion equation:

Dfðk;uÞ ¼
�
� B2u

2 � B1iuþ B0
�
¼ 0; (7)

where

B2 ¼ l2

�
k2 þ p2

�
; (8)

B1 ¼ l2

�
k2 þ p2

�2 þ �k2 þ p2
�
� Rak2l1; (9)

B0 ¼
�
k2 þ p2

�2 � Rak2: (10)

Equation (7) allows for two different types of instability. For
B0 ¼ 0, a stationary instability occurs along the curve
RaðsÞ ¼ ðk2þp2Þ2

k2 . The critical value is obtained for ksc ¼ p, so that
Rasc ¼ 4p2. For B0 > 0 and B1 ¼0, we obtain a Hopf bifurcation along
the curve

Rao ¼
�
k2 þ p2�þ l2

�
k2 þ p2�2

k2l1
(11)

The critical wave number obtained by minimizing Rao with
respect to k is
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